Osteoarthritis (OA) is a chronic disorder associated mainly with pain, limited range of motion, stiffness, low-grade systemic inflammation, and articular cartilage destruction. Recent studies have demonstrated the involvement of chondrocyte differentiation (hypertrophy) as one of the mechanisms in cartilage degradation in OA. This implicates the involvement of principal changes in the regulation of cellular function associated with profound alterations in chondrocyte energy metabolism in the course of cartilage resorption. Therefore, this review describes the major energy-generating pathways and their regulatory molecules used by the growth plate chondrocytes during endochondral ossification and by articular chondrocytes in OA. These regulatory molecules facilitate either the glycolytic pathway of energy generation, which controls cell proliferation, or mitochondrial oxidative phosphorylation promoted by AMPK and sirtuins and responsible for tissue regeneration. Consideration of the disturbances in energy metabolic pathways associated with OA might provide an approach to disclose the primary causes of the disease's development and progression. Medline/PubMed was searched for publications in English using key words: osteoarthritis, epiphyseal growth plate, articular cartilage, glycolysis, oxidative phosphorylation, and regulation of energy metabolism.
Our results suggest that the expressions of MMP-9 and ULK1 might be associated with disease activity. Increased baseline gene expressions of RUNX2, p21 and caspase 3 in the peripheral blood might predict better responses to MTX therapy.
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by pain, synovial hyperplasia, mononuclear cell infiltration, bone erosion and joint destruction. Efficacy of personalized therapy in RA is associated with correct choice of therapeutic agent and a possibility to predict its effect prior to treatment. Our objective was to examine the association of baseline expression of metalloproteinase (MMP)-9 and cathepsin K, which are involved in cartilage and bone degradation, as well as proinflammatory cytokines tumour necrosis factor (TNF)α and interleukin (IL)-1β in the peripheral blood mononuclear cells (PBMCs) obtained from patients with RA cultured with tofacitinib (TFCN) and remission achievement. We examined 12 tofacitinib-naïve patients with RA, with a median age of 51 years and disease duration of 37.6 months. After three months of TFCN therapy, six of these patients reached clinical remission criteria while others preserved high and moderate disease activity. PBMCs were tested prior to therapy followed by their isolation in Ficoll density gradient and cultured with 100 nM TFCN for 48 h. Gene expression analysis for MMP-9, cathepsin K, IL-1β, and TNFα was performed with quantitative real-time RT-PCR using total RNA isolated from and cultured with TFCN PBMCs compared with untreated cells. Expression of all the examined genes was significantly upregulated in those cultured with TFCN PBMCs from patients who maintained high and moderate disease activity after TFCN therapy while TNFα gene expression was significantly downregulated in patients who gained remission compared with untreated counterparts. Downregulation of TNFα gene expression in PBMCs from TFCN-naïve patients with RA cultured with TFCN prior to therapy compared with untreated counterparts might serve a prognostic biomarker for remission attainment in response to tofacitinib therapy.
Rheumatoid arthritis (RA) is a chronic inflammatory disease with unknown etiology that affects various pathways within the immune system, involves many other tissues and is associated with pain and joint destruction. Current treatments fail to address pathophysiological and biochemical mechanisms involved in joint degeneration and the induction of pain. Moreover, RA patients are extremely heterogeneous and require specific treatments, the choice of which is complicated by the fact that not all patients equally respond to therapy. Gene expression analysis offer tools for patient management and personalization of patient's care to meet individual needs in controlling inflammation and pain and delaying joint destruction.
We investigated the importance of the baseline expression of genes involved in energy generation, as prognostic biomarkers of the treatment response to tofacitinib in patients with rheumatoid arthritis (RA). Peripheral blood samples were obtained from 28 patients with RA who received 3 months of tofacitinib therapy from 26 healthy controls. Clinical response was evaluated based on the disease activity score, the erythrocyte sedimentation rate (DAS28-ESR), and the serum levels of ACPA, RF, CRP, and ESR. Clinical remission was assessed based on DAS28 score <2.6. Protein concentrations were measured using ELISA. Total RNA isolated from whole blood was used for gene expression analysis using quantitative RT-PCR. All patients were diagnosed with Steinbrocker’s radiographic stage II-III at baseline, and most showed erosive arthritis with ACPA and RF positivity. Tofacitinib treatment significantly decreased the disease activity. Upon study completion, seven patients showed remission. Before and after TOFA therapy, a significantly higher expression of succinate dehydrogenase and pyruvate kinase genes was observed in all the examined patients compared to healthy subjects. However, the pre-therapy expression of these genes and corresponding proteins was significantly (p ≤ 0.05) lower in patients who showed remission than in other patients with RA. Moreover, we observed that, during follow-up, patients who developed remission showed an increasing trend in the expression of the examined genes, whereas the others showed some decreases in gene expression, although this was not statistically significant. We concluded that, compared with RA patients maintaining persistent moderate or high disease activity, those with clinical remission following tofacitinib treatment showed a significantly lower baseline expression of genes involved in energy generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.