This work describes the possibility of fabrication of the large batches of magnetic nanoparticles using electrophysical methods of electric explosion of the wire, laser target evaporation and spark discharge. Bioapplications of nanoparticles require the production of magnetic materials in the form of stabilized aqueous suspensions or hydrogels with magnetic fillers; therefore, some details of the synthesis of these materials and their certification are discussed. The peculiarities of interaction of magnetic nanoparticles with biological systems, the problem of biocompatibility, the possibility of using ferrogel substrates for the needs of cell technologies and regenerative medicine, as well as implication of biomimetics in the development of magnetic biosensors are considered. The results of the analysis of a number of different biological experiments carried out with suspensions of various types, obtained based on the same batch of MNPs are presented. An analysis of examples of magnetic biodetection and existing theoretical approaches will make it possible to assess the prospects of this scientific direction for the creation of highly sensitive thin film sensors based on the giant magnetoimpedance effect for biomedical applications
Magnetic and structural properties iron oxide micro- and nanoparticles and composites based on epoxy resin at different mass concentrations of particles are investigated (0, 5, 10, 30%). Commercial Alfa Aesar microparticles and nanoparticles obtained by electric explosion of wire with different dispersion parameters were compared. Magnetoimpedance detection of stray magnetic fields of the obtained composites in the form of cylinders using a strip multilayer film element [FeNi/Cu]5/Cu/[FeNi/Cu]5 was carried out. It is shown that it is possible to determine the position of filled magnetic composites at different mass concentrations of magnetic micro- or nanoparticles with different parameters of dispersion of the ensemble using magnetoimpedance detection. Ключевые с
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.