A model of thermal electron emission enhanced by the electric field (thermo-field emission) from the metal cathode substrate into a thin insulating film formed on its surface is developed. A system of equations for the cathode surface temperature in the arc discharge and the electric field strength in the film, providing the required discharge current density, is formulated. It is shown that existence of the dielectric film can result in a considerable reduction of the cathode temperature in the discharge due to lower potential barrier height at the metal-insulator boundary than at the metal-discharge boundary in case of the metal cathode without the film. It is found that due to an enhancement of thermal emission of electrons into the film by the electric field generated in it, an additional decrease of the cathode temperature by about 100 K takes place.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.