Summary Partial blockages form on the inner wall of the crude-oil pipelines as a result of asphaltene precipitation, scale deposition, and so forth. If not controlled and rehabilitated periodically, these partial blockages can have a serious adverse effect on the efficiency, economy, and safety of the operation of the pipeline. Before each rehabilitation operation, the detection of the local flow-condition deterioration (change in diameter) is necessary for efficiency and economy considerations, especially for long-distance subsea crude-oil pipelines. Most conventional detection techniques require the installment of detecting devices along the pipeline. However, they are economically expensive and even technically impossible for pipelines in operation. The present work focuses on an economically efficient technique that can realize remote nonintrusive measurement (i.e., the pressure-wave technique). The purpose of our research is to develop a method for calibrating multiple irregular partial blockages inside the liquid pipe by using the pressure response in the time domain at certain measuring points along the pipe under the transient state. The method involves the direct problem and the inverse problem. The direct problem is the simulation of the transient flow in the liquid pipe with single or multiple partial blockages. A second-order direct problem solver is developed in the framework of the Godunov-typefinite-volume method (FVM). The inverse problem is to determine the partial-blockage distribution by using the pressure response at the measuring point under transient conditions. Our algorithm to solve the inverse problem comprises analytical evaluation and optimization. The analytical evaluation provides a reliable search space for the following optimization procedure, and thus effectively alleviates the local optimum problem. Numerical results demonstrate the efficiency and accuracy of proposed methods for solving the direct and inverse problems.
Article justifies accounting for internal pressure effect in the pipeline, causing additional bending of the pipeline. According to some scientists, there is an erroneously used concept of the equivalent longitudinal axial force (ELAF) Sx, which depends on working pressure, temperature stresses, and joint deformations of pipelines with various types of soils. However, authors of the article use ELAF Sx concept at construction of mathematical model of stress-strain state (SSS) for complex section of the trunk pipeline, and also reveal it when analyzing the results of calculating the durability and stability of the pipeline. Analysis of SSS for calculated section of the pipeline was carried out for two statements of the problem for different values of operation parameters. In the first statement, effect of internal pressure causing bending of the pipeline is taken into account, and in the second it is neglected. It is shown that due to effect of ELAF Sx at p0 = 9.0 MPa, Dt = 29 °C extreme value of bend increases by 54 %, extreme values of bending stresses from span bending moment increase by 74 %, and extreme value of bending stresses from support bending moment double with regard to corresponding SSS characteristics of the pipeline. In case of neglecting the internal pressure effect causing additional bending of the pipeline (second statement of the problem), error in calculating the extreme value of bend is 35 %, extreme value of bending stresses from span bending moments is 44 %, and extreme value of bending stresses from support bending moments is 95 %.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.