In this letter, we report on accurate comparative measurements of Raman scattering from bulk crystalline Si and from hydrogenated amorphous Si thin films before and after their pulse laser annealing, performed for the purpose of Si crystalline grain formation. Being accompanied by the respective optical transmittance/reflectance measurements, these data allowed us to estimate the integrated Raman scattering cross section ratios of crystalline and microcrystalline Si to hydrogenated amorphous Si and to compare the results with those known from the literature. For crystalline Si, the obtained ratio is equal to 0.75, while for microcrystalline Si, it is equal to at least 2. Our results are found to contradict the proposed earlier exponential decay dependence of the integrated Raman scattering cross section ratio of microcrystalline to amorphous Si on the crystalline grain size. The physical reasons, which support our findings, are discussed.
The p-Si(or n-Si)/GeO[SiO2] (or GeO[SiO])/indium-tin-oxide (ITO) structures were fabricated by simultaneous evaporation of GeO2 and SiO2 (or SiO) powders in high vacuum and further deposition of ITO contacts using the magnetron sputtering technique. The structural properties of the GeO[SiO2] and GeO[SiO] films were studied using FTIR and Raman spectroscopy. According to Raman data, the GeO[SiO] films deposited at a temperature of 100 °C contain amorphous Ge clusters. Their current-voltage characteristics were measured in the air atmosphere, and resistive switching (memristor effect) was observed in structures without a preliminary forming procedure. The Shklovskii-Efros percolation model gives a consistent explanation for the charge transport in the high-resistive state and the low-resistive state of memristors based on GeO[SiO2] or GeO[SiO] films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.