An analysis of the results of complex experimental and theoretical studies of photoinduced changes in the spectral properties of photochromic diarylethene in various nanostructured systems is presented. The properties of diarylethene were studied in solutions in the presence of colloidal metal and semiconductor nanoparticles, as well as in the form of solid-phase composite nanostructured core-shell systems based on colloidal nanoparticles with a shell of diarylethene molecules (including in a polymer matrix). A photoinduced reversible change in the electronic and vibrational spectra of diarylethene in various studied matrices was found. The results can be used to create optoelectronic photo-switchable elements for ultra-high-capacity memory devices, photo-controlled molecular switches and sensors.
A study was carried out and a comparative analysis of the spectral-kinetic (absorption and fluorescent) characteristics of nanospheres containing luminescent inorganic quantum dots (QDs) CdSe/ZnS, covered with an amphiphilic polymer shell, which ensures the stability of nanospheres in aqueous colloidal solutions and the possibility of introducing into them hydrophobic photochromic diarylethene molecules with different structure. Photoinduced reversible isomerization of diarylethene molecules causes modulation of the photoluminescence signal of quantum dots, including through the control of the efficiency of resonant energy transfer (FRET) from quantum dots to the cyclic isomer of diarylethene. The FRET efficiency turned out to be the highest in nanospheres with DAE2 and DAE4. The value of the quality index (QF) of the FRET photomodulator (which shows the efficiency of modulation of the quantum yield of QD photoluminescence), introduced in this work, varies for samples with different diarylethenes from 0.003 (for DAE1) to 0.09 (for DAE2). Nanospheres containing luminescent nanoparticles of various shapes can be used in the development of luminescent photocontrolled panels, fluorescent markers, etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.