Hydrogen sulfide (H(2)S) is the third gasotransmitter found to be produced endogenously in living cells to exert physiological functions. Large conductance (maxi) calcium-activated potassium channels (BK), which play an important role in the regulation of electrical activity in many cells, are targets of gasotransmitters. We examined the modulating action of H(2)S on BK channels from rat GH(3) pituitary tumor cells using patch clamp techniques. Application of sodium hydrogen sulfide as H(2)S donor to the bath solution in whole cell experiments caused an increase of calcium-activated potassium outward currents. In single channel recordings, H(2)S increased BK channel activity in a concentration-dependent manner. Hydrogen sulfide induced a reversible increase in channel open probability in a voltage-dependent, but calcium independent manner. The reducing agent, dithiothreitol, prevented the increase of open probability by H(2)S, whereas, the oxidizing agent thimerosal increased channel open probability in the presence of H(2)S. Our data show that H(2)S augments BK channel activity, and this effect can be linked to its reducing action on sulfhydryl groups of the channel protein.
Peripheral mechanisms of primary headaches such as a migraine remain unclear. Meningeal afferents surrounded by multiple mast cells have been suggested as a major source of migraine pain. Extracellular ATP released during migraine attacks is a likely candidate for activating meningeal afferents via neuronal P2X receptors. Recently, we showed that ATP also increased degranulation of resident meningeal mast cells ( Nurkhametova et al., 2019 ). However, the contribution of ATP-induced mast cell degranulation in aggravating the migraine pain remains unknown. Here we explored the role of meningeal mast cells in the pro-nociceptive effects of extracellular ATP. The impact of mast cells on ATP mediated activation of peripheral branches of trigeminal nerves was measured electrophysiologically in the dura mater of adult wild type (WT) or mast cell deficient mice. We found that a spontaneous spiking activity in the meningeal afferents, at baseline level, did not differ in two groups. However, in WT mice, meningeal application of ATP dramatically (24.6-fold) increased nociceptive firing, peaking at frequencies around 10 Hz. In contrast, in mast cell deficient animals, ATP-induced excitation was significantly weaker (3.5-fold). Application of serotonin to meninges in WT induced strong spiking. Moreover, in WT mice, the 5-HT3 antagonist MDL-7222 inhibited not only serotonin but also the ATP induced nociceptive firing. Our data suggest that extracellular ATP activates nociceptive firing in meningeal trigeminal afferents via amplified degranulation of resident mast cells in addition to direct excitatory action on the nerve terminals. This highlights the importance of mast cell degranulation via extracellular ATP, in aggravating the migraine pain.
ObjectiveIsoflurane and other volatile anesthetics are widely used in children to induce deep and reversible coma, but they may also exert neurotoxic actions. The effects of volatile anesthetics on the immature brain activity remain elusive, however.MethodsThe effects of isoflurane on spontaneous and sensory-evoked activity were explored using intracortical extracellular field potential and multiple unit recordings in the rat barrel cortex from birth to adulthood.ResultsDuring the first postnatal week, isoflurane suppressed cortical activity in a concentration-dependent manner. At surgical anesthesia levels (1.5–2%), isoflurane completely suppressed the electroencephalogram and silenced cortical neurons. Although sensory potentials evoked by the principal whisker deflection persisted, sensory-evoked early gamma and spindle-burst oscillations were completely suppressed by isoflurane. Isoflurane-induced burst-suppression pattern emerged during the second postnatal week and matured through the first postnatal month. Bursts in adolescent and adult rats were characterized by activation of entire cortical columns with a leading firing of infragranular neurons, and were triggered by principal and adjacent whiskers stimulation, and by auditory and visual stimuli, indicating an involvement of horizontal connections in their generation and horizontal spread.InterpretationThe effects of isoflurane on cortical activity shift from total suppression of activity to burst-suppression pattern at the end of the first postnatal week. Developmental emergence of bursts likely involves a development of the intracortical short-and long-range connections. We hypothesize that complete suppression of cortical activity under isoflurane anesthesia during the first postnatal week may explain neuronal apoptosis stimulated by volatile anesthetics in the neonatal rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.