Zr-Th-U minerals, namely baddeleyite, zircon and U-Th-oxide, were found in high-Mg diorite from the Late Devonian – Early Carboniferous synplutonic dyke in granodiorites of the Chelyabinsk massif, South Urals. Micron-sized minerals were investigated by electron microscopy and cathodoluminescence spectroscopy. Their chemical compositions were determined by electron probe microanalysis that was optimized to ensure more precise measurements of the composition of minerals. Baddeleyite grains are found as inclusions in amphibole crystals and reside in intergranular areas. The former retain their composition and show no traces of corrosion or substitution. In the intergranular areas, baddeleyite grains were replaced by polycrystalline zircon due to the reaction with an acid melt, and the U-Th-oxide precipitated inside baddeleyite simultaneously, which suggests the restite origin of baddeleyite. The main features of the baddeleyite composition are extremely high concentrations of ThO2 and UO2 (to 0.03 wt. % and 1.0 wt. %, respectively), which may be due to the metasomatic interaction between the mantle peridotite and the crustal or carbonatite fluid or melt.
Fe–Mg carbonate metasomatites in the limestones of the Suran suite of the Lower Riphean in the Avzyansky ore district of the Bashkir meganticlinorium are represented by large deposits of Fe-magnesite (Ismakaevo deposit) and breinerite stocks (Bogryashka deposit). The metasomatic zonality is represented by a series of limestone — dolomite — Fe-magnesite (breinerite). Ferrous magnesite contains up to 8 mol. % FeСO3. In breinerite iron saturation varies from 10 to 45 mol. % FeСO3. The metasomatic fluid was a brine of Ca, Na, Mg chlorides with an impurity of Fe, and was connected with the remobilization processes of evaporite brines buried in sediments of the Lower Riphean. The salinity and homogenization temperature of fluid inclusions in magnesites are in the range of 20–26% eq. NaCl and 200–240°C, and in breinerites — 10–15% eq. NaCl and 140–190°C, respectively. The interaction of fluid with terrigenous rocks in the tectonically active zone of the Mashak riftogenic graben led to the enrichment of various ligands and more active hydrothermal redeposition in the metasomatic products of medium and heavy lanthanides. During the migration of fluid through the limestone unite in the cooling process, Fe-magnesite of the Ismakaevo deposit was formed in the frontal zone, and the breinerite of Bogryashka deposit — in the rear zone adjacent to the shale source of brine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.