Currently, radio monitoring systems are being actively improved in the direction of expanding the range of operating frequencies and the width of the spectrum of processed signals, which in some cases requires changing approaches to the design of their receiving devices. The purpose of the article is to substantiate the methods and circuit design options for implementing a receiver of an ultra-wide-range radio monitoring system and to justify the sequence of selecting the element base and calculating the parameters of the receiving path. The research proves expedient to choose the infradine structure of the radio receiving path as a basis, in which the frequency of the mirror channel is located far from the frequency of the main channel, so the mirror channel is easily suppressed by a simple low-pass filter. One of the main problems that arise when designing ultra-wideband radio receivers is the simultaneous provision of a large dynamic range and a low noise figure. To reduce the noise figure, a variant of constructing a path was proposed, starting with a low-noise amplifier with increased parameters of nonlinear selectivity, which is acceptable if there is a low probability of intermodulation combinations. The article suggests a receiver with an operating frequency range of 0.5–18 GHz and an analogto-digital converter with a speed of up to 10.4 GSPS. The element base was selected for the receiving devices and the main parameters of the path were calculated. A number of examples are used to analyze the ways to increase the dynamic range of a radio receiver and the influence of element base parameters on the device performance. The main technical characteristics of the radio receiver for effective operation of modern radio monitoring systems and the ways to increase the dynamic range thereof are described.
The purpose of the article is the need to create a single portrait of a radioemission source and identification methods. Radiomonitoring tools are used to detect, identify and locate sources of radioemission in the coverage area. One of the important tasks solved by the radio monitoring system is the reception (interception) of transmitted messages on the air and signal identification. The article deals with the classification of the main parameters of radioemission sources, provides a classification of the modulation types and the main its parameters. The signal structure can be determined by autocorrelation and correlation methods. Autocorrelation is used to determine signal parameters such as the transmission duration, data block duration. Correlation allows to identify a specific signal from the set. To detect a radioemission source, two generalized algorithms are presented: recognition of the radioemission source type by unknown parameters and an algorithm for identifying a radiation source by given parameters. A simulation result of a radioemission source recognition algorithm with given parameters is presented; a linear frequencymodulated signature was used as a given signal. The result of the algorithm is a single outlier with full signal compliance, when the signals diverge, the outlier width increases, which indicates a discrepancy. This algorithm can be used to search for a given type of signal, which allows to increase the strip analysis speed and the detection accuracy. To increase the detection accuracy, it is recommended to use a combination of two algorithms with additional digital signal processing, which should lead to an increase in the accuracy of type of signal determining and a more rapid determination of the radiation source parameters.
When designing radio engineering products, at the early stages,one of the most important tasks to be solved is to determine the effective version of the system/device by analyzing all possible available versions. Therefore, the development of such systems / devices is a complex and time-consuming process, which involves an infinitely large number of iterations of calculations and simulations of various options in search of an optimal and efficient one. This article describes the programs: AppCAD from Agilent and ADISimRF from Analog Devices. These programs have a large functionality, a lot of calculated system characteristics of the path, but each of them has shortcomings, for example, the lack of an editable database of integrated circuits (IC), the lack of dynamic range calculations for third-order intermodulation of the receiving path, theinability to optimize for nonlinear distortions, etc.The purpose of the article is to develop an original program for calculating radio receiving paths, which is not inferior in functionality to foreign analogues and has a number of useful refinements for calculations. The article presents formulas forcalculating the noise figure of an analog-to-digital converter (ADC) and makes a comparative analysis of the resultsobtained with the real value. The noise figure of the radio receiving path is refined by including the reverseloss coefficient and the ADC noise figure in the formula. The program developed by the author of the article hasan editable element base, which simplifies and accelerates the calculation of the device. The algorithm of theprogram developed by the author is described, and the calculation of the system characteristics of the path for comparison with foreign analogues is given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.