The evidence is now overwhelming that partially assembled nucleosome states (PANS) are as important as the canonical nucleosome structure for the understanding of how accessibility to genomic DNA is regulated in cells. We use a combination of molecular dynamics simulation and atomic force microscopy to deliver, in atomic detail, structural models of three key PANS: the hexasome (H2A$H2B)$(H3$H4) 2 , the tetrasome (H3$H4) 2 , and the disome (H3$H4). Despite fluctuations of the conformation of the free DNA in these structures, regions of protected DNA in close contact with the histone core remain stable, thus establishing the basis for the understanding of the role of PANS in DNA accessibility regulation. On average, the length of protected DNA in each structure is roughly 18 basepairs per histone protein. Atomistically detailed PANS are used to explain experimental observations; specifically, we discuss interpretation of atomic force microscopy, Fö rster resonance energy transfer, and small-angle x-ray scattering data obtained under conditions when PANS are expected to exist. Further, we suggest an alternative interpretation of a recent genome-wide study of DNA protection in active chromatin of fruit fly, leading to a conclusion that the three PANS are present in actively transcribing regions in a substantial amount. The presence of PANS may not only be a consequence, but also a prerequisite for fast transcription in vivo.
The structural integrity of striated muscle is determined by extra-sarcomere cytoskeleton that includes structures that connect the Z-disks and M-bands of a sarcomere to sarcomeres of neighbor myofibrils or to sarcolemma. Mechanical properties of these structures are not well characterized. The surface structure and transversal stiffness of single fibers from soleus muscle of the rat were studied with atomic force microscopy in liquid. We identified surface regions that correspond to projections of the Z-disks, M-bands, and structures between them. Transversal stiffness of the fibers was measured in each of these three regions. The stiffness was higher in the Z-disk regions, minimal between the Z-disks and the M-bands, and intermediate in the M-band regions. The stiffness increased twofold when relaxed fibers were maximally activated with calcium and threefold when they were transferred to rigor (ATP-free) solution. Transversal stiffness of fibers heavily treated with Triton X-100 was about twice higher than that of the permeabilized ones, however, its regional difference and the dependence on physiological state of the fiber remained the same. The data may be useful for understanding mechanics of muscle fibers when it is subjected to both axial and transversal strain and stress.
Arrangement of chromatin in intact chicken erythrocyte nuclei was investigated by small angle neutron scattering. The scattering spectra have revealed that on the scales between 15 nm and 1.5 lm the interior of the nucleus exhibited properties of a mass fractal. The fractal dimension of the protein component of cell nucleus held constant at approximately 2.5, while the DNA organization was biphasic, with the fractal dimension slightly higher than 2 on the scales smaller than 300 nm and approaching 3 on the larger scales.
The ¢lament structures of the self-polymers of RecA proteins from Escherichia coli and Pseudomonas aeruginosa, their complexes with ATPQ QS, phage M13 single-stranded DNA (ssDNA) and the tertiary complexes RecA: :ATPQ QS: :ss-DNA were compared by small angle neutron scattering. A model was developed that allowed for an analytical solution for small angle scattering on a long helical ¢lament, making it possible to obtain the helical pitch and the mean diameter of the protein ¢lament from the scattering curves. The results suggest that the structure of the ¢laments formed by these two RecA proteins, and particularly their complexes with ATPQ QS, is conservative. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.