In 2000–2017, the GPS technology was first applied to study inter-seismic, co-seismic and post-seismic processes in the crust of the Altai Mountains (Gorny Altai). Our study aims at investigating the fields of displacement and deformation in the Gorny Altai region as a part of Asia.The 3D displacement fields are reconstructed for the period before the M 7.3 Chuya earthquake that occurred in the southern sector of the Altai GPS network (49° to 55°N, and 81° to 89°E)on 27 September 2003.Anomalous behavior features are discovered in the displacement orientations, as well as in the distribution of velocities and deformation in the zone of the future earthquake.The spatial displacement pattern defined for the period of co-seismic displacements corresponds to the right-lateral strike-slip along the vertical fault. The fault depth is estimated using the elastic model and the experimental data (change in displacement from 0.30 m to 0.02 m at the distances of 14 km and 84 km from the fault, respectively); it amounts to 8–10 km.The co-seismic deformation field is investigated.In the post-seismic stage (2004–2017), displacements revealedin the epicentral zone show the right-lateral strike-slip along the fault at the rate of 2 mm/yr. Therefore, two-layer viscoelastic models can be considered. The estimated viscosity of the lower crust ranges from 6×1019to 3×1020Pa×s, and the elastic upper crust thickness is 25 km. Analyzed are modern movements in the Gorny Altai region outside the Chuya earthquake area.The results of our study show that modern horizontal displacements occur in the NNW direction at the rate of 1.1 mm/yr, which is twice lower than the displacement rate before the earthquake.
Modern methods for determination of gravity values make it possible to obtain measurements with the accuracy up to 10 -9 from g 0 of the normal value (up to 1 microgal = 10 m/sec 2 ). While all the systematic and periodic effects are excluded, a question is raised about stability of the gravity field of the Earth over time. Changes of the altitude (the Earth's radius) with time can be estimated with an accuracy of 0.1 mm by modern space geodetic techniques, such as VLBI method. Our experi ments for evaluation of stability of the gravity values over the past decades are based on the data obtained by Russian and foreign observatories using absolute ballistic laser gravimeters. The results put a limit of 10 -10 per year to changes of the Earth's radius. These estimations can be useful for testing hypotheses in tectonics.Measurements of nontidal variations of gravity (∆g), which were obtained from 1992 to 2012 at the Talaya seismic sta tion (located in the southwestern part of the Baikal region), are interpreted together with GPS observation data. At the Ta laya seismic station, the linear component of gravity variations corresponds to changes in the elevation of this site. The corre lation coefficient is close to the normal value of the vertical gradient of gravity. At this site, coseismic gravity variations at the time of the Kultuk earthquake (27 August 2008, Mw=6.3) were caused by a combined effect of the change of the site's elevation and deformation of the crust. Our estimations of the coseismic effects are consistent with results obtained by mod eling based on the available seismic data.Key words: monitoring of gravity variations, changes in the Earth's radius, rift zone, GPSmonitoring, earthquake.Recommended by V.A. San'kov Citation: Timofeev V. Yu., Kalish Ye.N., Stus' Yu.F., Ardyukov D.G., Arnautov G.P., Smirnov M.G., Timofeev A.V., Nosov D.A., Sizikov I.S., Boiko E.V., Gribanova E.I. 2013. Gravity variations and recent geodynamics of the southwestern part of Baikal region.
We describe the history of studying the current crustal movements by various methods and discuss technogenic effects recorded at large water-reservoir zones and mineral deposits in Siberia. Initially, classical surveying techniques aimed to obtain high-accuracy ground-based measurements of height, tilt and direction. Modern geodesy techniques and methods for measuring absolute gravity are now available to investigate displacement, deformation, tilt and other phenomena taking place on the Earth’s surface. These methods are used to estimate kinematic parameters of the crust areas (e.g. rates of subsidence and horizontal movements) and to monitor fluid motions in mineral deposits. Such data are critical for ensuring a proper management of the mineral deposits. In this article, we analyse technogenic processes observed in the Ust Balyk oil-gas field, the Zapolyarny gas deposit, the water-reservoir zone at the Sayano-Shushenskaya hydroelectric power station (SSHPS) on the Yenisei river, and large open-pit mines in the Kuzbass basin. Our analysis is based on surface displacement rates estimated from the data collected in different periods of observations at large man-made facilities. In the study of the hydro technical objects, we estimated the displacement rates at 5.0 mm per year. In the northern areas of the West Siberian petroleum basin, subsidence rates amounted to 20–25 mm per year in the early 2000s. These estimates were supported by the high-accuracy gravity measurements showing an increase up to 6–7 microGal per year in the oil-gas field development areas. We assess a possibility of triggering effects related to weak seismicity due to a high stress accumulation rate (1 KPa per hour) in the SSHPS area. A connection between earth tides and catastrophic events, such as gas emissions in high amounts on mining sites, is discussed. Having analysed the surface monitoring records taken in South Primorye in September 2017, we conclude that underground nuclear explosions in North Korea in this period did not cause any significant displacement of the surface in this most southerly region of the Russian Far East territories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.