Here we highlight how both the root and shoot environment impact on whole plant hormone balance, particularly under stresses such as soil drying, and relate hormone ratios and relative abundances to processes influencing plant performance and yield under both mild and more severe stress. We discuss evidence (i) that abscisic acid (ABA) and ethylene act antagonistically on grain-filling rate amongst other yield-impacting processes; (ii) that ABA's effectiveness as an agent of stomatal closure can be modulated by coincident ethylene or cytokinin accumulation; and (iii) that enhanced cytokinin production can increase growth and yield by improving foliar stay-green indices under stress, and by improving processes that impact grain-filling and number, and that this can be the result of altered relative abundances of cytokinin and ABA (and other hormones). We describe evidence and novel processes whereby these phenomena are/could be amenable to manipulation through genetic and management routes, such that plant performance and yield can be improved. We explore the possibility that a range of ABA-ethylene and ABA-cytokinin relative abundances could represent targets for breeding/managing for yield resilience under a spectrum of stress levels between severe and mild, and could circumvent some of the pitfalls so far encountered in the massive research effort towards breeding for increases in the complex trait of yield.
The addition of 100 mM NaCl to the root medium of barley plants caused the rapid cessation of elongation of the growing leaf three, followed by a sudden resumption of growth during the following hour. The idea that resumption of growth is preceded and mediated by rapid and tissue-specific changes in ABA concentration and by changes in transpiration was tested. Leaf elongation velocity was recorded continuously using linear variable displacement transducers (LVDT), ABA was determined by immunoassay, and transpiration and stomatal conductivity were measured gravimetrically and by porometry, respectively. Within 10 min following addition of salt, ABA increased 6-fold in the distal portion of the leaf elongation zone; in the proximal portion, ABA accumulated with a delay. In the portion of the growing blade that had emerged ABA increased 3-fold and remained elevated during the following 20 min. This preceded a decrease in transpiration and stomatal conductivity, which, in turn, coincided with growth resumption. Twenty hours following the addition of salt, the ABA concentrations had returned to the level before stress. Leaf elongation velocity was still reduced. It is concluded that NaCl causes a rapid increase in ABA in the transpiring portion of the growing leaf. This leads to a decrease in transpiration. As a result, xylem water potential is expected to rise. The moment that the water potential gradient between the xylem and the peripheral cells in the growth zone favours water uptake again into the latter, leaf elongation resumes. The results suggest that ABA causes different responses in different leaf regions, all aimed at promoting the resumption of leaf growth.
Although it is widely accepted that aquaporins are involved in the regulation of root water uptake, the role of specific isoforms in this process is poorly understood. The mRNA expression and protein level of specific plasma membrane intrinsic proteins (PIPs) were analysed in Zea mays in relation to cell and root hydraulic conductivity. Plants were analysed during the day/night period, under different growth conditions (aeroponics/hydroponics) and in response to short-term osmotic stress applied through polyethylene glycol (PEG). Higher protein levels of ZmPIP1;2, ZmPIP2;1/2;2, ZmPIP2;5 and ZmPIP2;6 during the day coincided with a higher water permeability of root cortex cells during the day compared with night period. Similarly, plants which were grown under aeroponic conditions and which developed a hypodermis ('exodermis') with Casparian bands, effectively forcing more water along a membranous uptake path across roots, showed increased levels of ZmPIP2;5 and ZmPIP1;2 in the rhizodermis and exodermis. When PEG was added to the root medium (2-8 h), expression of PIPs and cell water permeability in roots increased. These data support a role of specific PIP isoforms, in particular ZmPIP1;2 and ZmPIP2;5, in regulating root water uptake and cortex cell hydraulic conductivity in maize.
Recent results concerning the short-term growth response to salinity of the developing barley leaf are reviewed. Plants were grown hydroponically and the growth response of leaf 3 was studied between 10 min and 5 d following addition of 100 mM NaCl to the root medium. The aim of the experiments was to relate changes in variables that are likely to affect cell elongation to changes in leaf growth. Changes in hormone content (ABA, cytokinins), water and solute relationships (osmolality, turgor, water potential, solute concentrations), gene expression (water channel), cuticle deposition, membrane potential, and transpiration were followed, while leaf elongation velocity was monitored. Leaf elongation decreased close to zero within seconds following addition of NaCl. Between 20 and 30 min after exposure to salt, elongation velocity recovered rather abruptly, to about 46% of the pre-stress level, and remained at the reduced rate for the following 5 d, when it reached about 70% of the level in non-stressed plants. Biophysical and physiological analyses led to three major conclusions. (i) The immediate reduction and sudden recovery in elongation velocity is due to changes in the water potential gradient between leaf xylem and peripheral elongating cells. Changes in transpiration, ABA and cytokinin content, water channel expression, and plasma membrane potential are involved in this response. (ii) Significant solute accumulation, which aids growth recovery, is detectable from 1 h onwards; growing and non-growing leaf regions and mesophyll and epidermis differ in their solute response. (iii) Cuticular wax density is not affected by short-term exposure to salt; transpirational changes are due to stomatal control.
We studied the possible involvement of ABA in the control of water relations under conditions of increased evaporative demand. Warming the air by 3°C increased stomatal conductance and raised transpiration rates of hydroponically grown Triticum durum plants while bringing about a temporary loss of relative water content (RWC) and immediate cessation of leaf extension. However, both RWC and extension growth recovered within 30 min although transpiration remained high. The restoration of leaf hydration and growth were enabled by increased root hydraulic conductivity after increasing the air temperature. The use of mercuric chloride (an inhibitor of water channels) to interfere with the rise on root hydraulic conductivity hindered the restoration of extension growth. Air warming increased ABA content in roots and decreased it in shoots. We propose this redistribution of ABA in favour of the roots which increased the root hydraulic conductivity sufficiently to permit rapid recovery of shoot hydration and leaf elongation rates without the involvement of stomatal closure. This proposal is based on known ability of ABA to increase hydraulic conductivity confirmed in these experiments by measuring the effect of exogenous ABA on osmotically driven flow of xylem sap from the roots. Accumulation of root ABA was mainly the outcome of increased export from the shoots. When phloem transport in air-warmed plants was inhibited by cooling the shoot base this prevented ABA enrichment of the roots and favoured an accumulation of ABA in the shoot. As a consequence, stomata closed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.