Over the past few decades, significant attention has been paid to the biomedical applications of terahertz (THz) technology. Nowadays, THz spectroscopy and imaging have allowed numerous demanding problems in the biological, medical, food, plant and pharmaceutical sciences to be solved. Among the biomedical applications, the label-free diagnosis of malignant and benign neoplasms represents one of the most attractive branches of THz technology. Despite this attractiveness, THz diagnosis methods are still far from being ready for use in medical practice. In this review, we consider modern research results in the THz diagnosis of malignant and benign neoplasms, along with the topical research and engineering problems which restrain the translation of THz technology to clinics. We start by analyzing the common models of THz-wave-tissue interactions and the effects of tissue exposure to THz waves. Then, we discuss the existing modalities of THz spectroscopic and imaging systems, which have either already been applied in medical imaging, or hold strong potential. We summarize the earlier-reported and original results of the THz measurements of neoplasms with different nosology and localization. We pay attention to the origin of contrast between healthy and pathological tissues in the THz spectra and images, and discuss the prospects of THz technology in
We have developed a method of terahertz (THz) solid immersion (SI) microscopy for continuous-wave reflection-mode imaging of soft biological tissues with a sub-wavelength spatial resolution. In order to achieve strong reduction in the dimensions of the THz beam caustic, an electromagnetic wave is focused into the evanescent field volume behind a medium with a high refractive index. We have experimentally demonstrated a 0.15λ-resolution of the proposed imaging modality at λ = 500 μm, which is beyond the Abbe diffraction limit and represents a considerable improvement over the previously-reported arrangements of SI imaging setups. The proposed technique does not involve any sub-wavelength near-field probes and diaphragms, thus, avoiding the THz beam attenuation due to such elements. We have applied the developed method for THz imaging of various soft tissues: a plant leaf blade, cell spheroids, and tissues of the breast ex vivo. Our THz images clearly reveal sub-wavelength features in tissues, therefore, promising applications of THz SI microscopy in biology and medicine.
This review highlights recent and novel trends focused on metallic (plasmonic) and dielectric metasurfaces in photoconductive terahertz (THz) devices. We demonstrate the great potential of its applications in the field of THz science and technology, nevertheless indicating some limitations and technological issues. From the state-of-the-art, the metasurfaces are, by far, able to force out previous approaches like photonic crystals and are capable of significantly increasing the performance of contemporary photoconductive devices operating at THz frequencies.
Nitrogen abundance is one of the most uncertain among all elements in the Earth's interior. Recent data indicate an affinity between Fe‐nitrides and Fe‐carbides in the Earth's mantle and inner core. In this work P‐V‐T equations of state of ε‐Fe3N0.8 and ε‐Fe3N1.26 (which is close to Fe7N3) have been determined using a combination of multianvil and synchrotron radiation techniques at pressures up to 30 GPa and temperatures up to 1473 K. A fit of the P‐V‐T data to the Vinet‐Rydberg and Mie‐Grüneisen‐Debye equations of state yields the following thermoelastic parameters for the ε‐Fe3N0.8: V0 = 81.44(2) Å3, KT0 = 157(3) GPa, KT′ = 5.3 (fixed), θ0 = 555 K (fixed), γ0 = 1.83(1), and q = 1.34(18). For ε‐Fe3N1.26 we obtained V0 = 86.18(2) Å3, KT0 = 163(2) GPa, KT′ = 5.3(2), θ0 = 562(90) K, γ0 = 1.85(2), and q = 0.55(24). It is likely that all presumably paramagnetic ε‐Fe3Nx with x = 0.75–1.5 have similar thermoelastic properties with a minor increase of the bulk modulus with increasing N content. The melting temperature of ε‐Fe3Nx increases from approximately 1473 to 1573 K in the pressure range from 5 to 30 GPa. We also determined a preliminary equation of state for γ‐Fe4Ny and calculated y = 0.35(2) from the data at 20–30 GPa. Combining the results with a recent experimental study on the stability of β‐Fe7N3, isostructural with Fe7C3, and a theoretical study of the magnetic transitions in ε‐Fe3Nx, we estimate the density of Fe‐nitrides at the Earth's inner core conditions. Our results indicate that at 5000–6000 K, 2.0–3.2 wt % N can explain the density deficit in Earth's inner core.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.