Abstract. Static verification of a program source code correctness is an important element of software reliability. Formal verification of software programs involves proving that a program satisfies a formal specification of its behavior. Many languages use both static and dynamic type checking. With such approach, the static type checker verifies everything possible at compile time, and the dynamic one checks the remaining. The current state of the Jolie programming language includes a dynamic type system. Consequently, it allows avoidable run-time errors. A static type system for the language has been formally defined on paper but lacks an implementation yet. In this paper, we describe a prototype of Jolie Static Type Checker (JSTC), which employs a technique based on a SMT solver. We describe the theory behind and the implementation, and the process of static analysis. The article is published in the authors' wording.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.