Introduction: In recent years, sentiment analysis has found practical application in many areas, such as evaluating the quality of products and services based on customers’ online reviews, analyzing negative emotions in messages, forecasting stock markets or political situations based on news data. In this regard, a large number of systems and methods for Russian text sentiment analysis are being developed. Purpose: A detailed review of approaches, and comparative analysis of available databases in the field of Russian text sentimental analysis. Results: Our analytical review of the approaches to Russian text data sentiment analysis has shown that there are a large number of ways for preprocessing, vectorization and machine classification of the text data. Studying the available databases shows that the Russian text sentimental analysis is less developed than that for other major world languages. Studying the existing software systems for Russian text analysis reveals their low accuracy compared to English, which can be caused by the sophisticated structure of Russian. Discussion: In our further research, we plan to implement sentiment analysis of spoken speech using audio data. To do this, we will need to obtain a spelling transcription of speech for each speaker.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.