Пусть $R$ - коммутативное кольцо, а $I\subset R$ - нильпотентный идеал, для которого фактор-кольцо $R/I$ отщепляется от $R$. Пусть $N\geqslant 1$ - такое натуральное число, что $I^N=0$. В статье строится канонический изоморфизм между относительной $K$-группой Милнора $K^{M}_{n+1}(R,I)$ и фактором относительного модуля дифференциальных форм $\Omega^n_{R,I}/d\Omega^{n-1}_{R,I}$ в предположении, что число $N!$ обратимо в $R$ и что кольцо $R$ слабо $5$-стабильно. Последнее означает, что любые четыре элемента кольца $R$ могут быть сдвинуты на обратимый элемент так, чтобы они стали обратимыми.
Библиография: 29 наименований.
Пусть $R$ - $p$-адически полное кольцо, снабженное $\delta$-структурой. В статье строится функториальный гомоморфизм групп из $K$-группы Милнора $K^{M}_{n}(R)$ в фактор $p$-адического пополнения модуля дифференциальных форм $\widehat{\Omega}^{n-1}_{R}/d\widehat{\Omega}^{n-2}_{R}$. Данный гомоморфизм является $p$-адическим аналогом отображения Блоха, определенного для относительных $K$-групп Милнора нильпотентных расширений колец степени нильпотентности $N$, для которых число $N!$ обратимо.
Библиография: 12 названий.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.