When learning a neural network, the weighting factors are adjusted based on minimizing a calculation error. When the objective function has a complex character and a big number of local extremums, network learning using gradient optimization methods does not often guarantee the finding of a global extremum. Nowadays, the solution of this problem for a large class of problems includes using genetic algorithms as the main method for learning backpropagation networks. The development of these algorithms has continued in the study of bioinspired algorithms and their hybrid modifications. The use of bioinspired algorithms, which are based on random search methods, allows solving the problem of bypassing local extremums and has high convergence rate. The paper considers a combined bioinspired algorithm that solves the global optimization problem when there are problems associated with learning artificial neural networks. The network structure and the number of neurons in each hidden layer are important parameters affecting the effectiveness of artificial neural networks learning. Three-layer neural networks can solve many complex problems. However, the effect of the number of neurons in each hidden layer on the convergence rate is underexplored in the general case. The paper studies a combination of the firefly algorithm and gradient descent developed by the authors for the study of three-layer neural networks of various topologies. The conducted research made it possible to identify topology from artificial neural networks. This topology makes it possible to obtain the most optimal solution for fewer steps. The analysis of the learning algorithm performance is based on the exceptional-OR (Xor) function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.