Here we describe a DNA analog in which the mesyl (methanesulfonyl) phosphoramidate group is substituted for the natural phosphodiester group at each internucleotidic position. The oligomers show significant advantages over the often-used DNA phosphorothioates in RNA-binding affinity, nuclease stability, and specificity of their antisense action, which involves activation of cellular RNase H enzyme for hybridization-directed RNA cleavage. Biological activity of the oligonucleotide analog was demonstrated with respect to pro-oncogenic miR-21. A 22-nt anti–miR-21 mesyl phosphoramidate oligodeoxynucleotide specifically decreased the miR-21 level in melanoma B16 cells, induced apoptosis, reduced proliferation, and impeded migration of tumor cells, showing superiority over isosequential phosphorothioate oligodeoxynucleotide in the specificity of its biological effect. Lower overall toxicity compared with phosphorothioate and more efficient activation of RNase H are the key advantages of mesyl phosphoramidate oligonucleotides, which may represent a promising group of antisense therapeutic agents.
The design of modified oligonucleotides that combine in one molecule several therapeutically beneficial properties still poses a major challenge. Recently a new type of modified mesyl phosphoramidate (or µ-) oligonucleotide was described that demonstrates high affinity to RNA, exceptional nuclease resistance, efficient recruitment of RNase H, and potent inhibition of key carcinogenesis processes in vitro. Herein, using a xenograft mouse tumor model, it was demonstrated that microRNA miR-21–targeted µ-oligonucleotides administered in complex with folate-containing liposomes dramatically inhibit primary tumor growth via long-term down-regulation of miR-21 in tumors and increase in biosynthesis of miR-21–regulated tumor suppressor proteins. This antitumoral effect is superior to the effect of the corresponding phosphorothioate. Peritumoral administration of µ-oligonucleotide results in its rapid distribution and efficient accumulation in the tumor. Blood biochemistry and morphometric studies of internal organs revealed no pronounced toxicity of µ-oligonucleotides. This new oligonucleotide class provides a powerful tool for antisense technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.