The one of the known applications of the classical Lorenz system is an axisymmetric αω-dynamo with a dynamical quenching of the α-effect by the helicity. In this paper we consider generalizations of the Lorentz system, which are the models of α2 - and α2ω-dynamo. The cases of finite and infinite memory in the quenching functional are considered. The conditions for the existence of stationary dynamo regimes and regimes of regular and chaotic inversions are analytically and numerically studded.
В работе изучается двумерная система интегро-дифференциальных уравнений, которая является простейшей эредитарной моделью двумодового гидромагнитного динамо. Учет пространственной и временной нелокальности взаимодействий в динамо-системах сейчас активно исследуется. В маломодовых приближениях уравнений динамо можно рассматривать только временную нелокальность, т.е. эредитарность (память). Память в исследуемой системе реализована в виде обратной связи, распределенной по всем прошлым состояниям системы. Обратная связь представлена с помощью интегрального члена типа свертки от квадратичной комбинации фазовых переменных с ядром достаточно общего вида. Этот член моделирует подавление турбулентного генератора поля (α-эффекта) квадратичной формой от фазовых переменных. В реальных динамо-системах такое подавление обеспечивается силой Лоренца. Основной результат работы – доказательство возможности исключения интегрального члена для одного класса ядер. Такие ядра являются решениями однородного линейного дифференциального уравнения с постоянными коэффициентами. Доказано, что исследуемую интегро-дифференциальную систему можно заменить дифференциальной системой большей размерности с подходящими начальными условиями на дополнительные фазовые переменные. Если ядро является решением уравнения n-го порядка, то размерность системы может достигать 3n−2 и зависит от начальных условий, которым удовлетворяет ядро. В работе используются классические методы теории дифференциальных уравнений. Приводятся примеры динамических систем, возникающих при некоторых ядрах в результате исключения интегрального члена. Результаты работы можно использовать для верификации вычислительных алгоритмов и программных кодов, разработанных для решения интегро-дифференциальных уравнений. We study a two-dimensional system of integro-differential equations, which is the simplest hereditary model of a two-mode hydromagnetic dynamo. Accounting for the spatial and temporal nonlocality of interactions in dynamo systems is currently being actively studied. In the low-mode approximations of the dynamo equations, one can consider only temporal nonlocality, i.e. heredity (memory). Memory in the system under study is implemented in the form of feedback distributed over all past states of the system. The feedback is represented by a convolution-type integral term of a quadratic combination of phase variables with a fairly general kernel. This term models the quenching of the turbulent field generator (α-effect) by a quadratic form in phase variables. In real dynamo systems, such quenchingn is provided by the Lorentz force. The main result of the work is a proof of the possibility of eliminating the integral term for one class of kernels. Such kernels are solutions of a homogeneous linear differential equation with constant coefficients. It is proved that the studed integro-differential system can be replaced by a higher-dimensional differential system with suitable initial conditions for additional phase variables. If the kernel is a solution to an n-order equation, then the dimension of the system can reach 3n−2 and depends on the initial conditions that the kernel satisfies. The work uses classical methods of the theory of differential equations. Examples are given of dynamical systems that arise for some kernels as a result of the elimination of the integral term. The results of the work can be used to verify computational algorithms and program codes developed for solving integro-differential equations.
По данным международной сети автоматического обнаружения вистлеров AWDANET, глобальной сети регистрации импульсных грозовых разрядов WWLLN и ОНЧ-пеленгатора ИКИР ДВО РАН проведён статистический ана- лиз с целью обнаружения источников генерации вистлеров. Из базы данных WWLLN были отобраны пары разрядов с временным интервалом следования менее 100 мс и расстоянием между ними менее 40 км. Полученный временной ряд показал высокую степень корреляции с временным рядом зарегистриро- ванных вистлеров в данных AWDANET. According to the data of the international whistler detection network AWDANET, the global network for detecting pulsed lightning discharges WWLLN and the VLF direction finder of the IKIR FEB RAS, a statistical analysis was carried out to identify whistler sources. Pairs of discharges with a repetition time interval of less than 100 ms and a distance between them of less than 40 km were excluded from the WWLLN database. The resulting time series showed a high degree of correlation with the time series of registered whistlers in the AWDANET data.
В данной статье рассматривается модель динамо в виде двумерной динамической системы в интегро-дифференциальной форме. В модели реализован стабилизирующий генерацию поля механизм обратной связи в виде подавления α-эффекта функционалом сверточного типа от актуальных и предыдущих значений спиральности и энергии. Наличие этого механизма подавления вводит в модель эредитарность (память). Для модели была построена численная схема ввиде совмещение разностных схем для дифференциальной и интегральной части, двухступенчатый неявный методы Рунге-Кутты и метод трапеций соотвественно. Так же были рассмотрены и графически представлены динамические режимы нашей модели. This article discusses a dynamo model in the form of a two-dimensional dynamical system in integro-differential form. The model implements a stabilizing polarization generator in the form of suppression of the a effect of convolutional type functional from current and previous helicity and energy values. The presence of this suppression mechanism introduces hereditarity (memory) into the model. For modeling, a digital scheme was constructed in the form of a combination of difference schemes for the differential and integral parts, a twostep implicit Runge-Kutta method and a trapezium method, respectively. We also reviewed and graphically presented the dynamic modes of our model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.