We report the isolation and detailed characterization of the novel strain, Partizansk/2006, of Powassan virus (POWV) from a human case of infection, which occurred in Primorsky krai, Russia, in 2006. Comparative complete genome sequence analysis of the Far Eastern strains Spassk-9 (1975), Nadezdinsk-1991 and Partizansk/2006 of POWV revealed that these strains are 99.8% similar to the LB strain, which was isolated in Canada in 1958. Phylogenetic analysis of 5' UTR sequences of five other strains of POWV isolated from 1972 to 1986 in Primorsky krai produced similar results. Presumably, Far Eastern POWV has common putative ancestor with LB strain POWV from North America, and the time of divergence of these POWVs is relatively short. We conclude that POWV has become endemic in Far Eastern Russia.
Polyclonal and monoclonal antibodies (MABs) to human laminin-binding protein (LBP) can efficiently block the penetration of some alpha- and flaviviruses into the cell. A panel of 13 types of MABs to human recombinant LBP was used for more detailed study of the mechanism of this process. Competitive analysis has shown that MABs to LBP can be divided into six different competition groups. MABs 4F6 and 8E4 classified under competition groups 3 and 4 can inhibit the replication of Venezuelan equine encephalitis virus (VEEV), which is indicative of their interaction with the receptor domain of LBP providing for binding with virions. According to enzyme immunoassay and immunoblotting data, polyclonal anti-idiotypic antibodies to MABs 4F6 and 8E4 modeling paratopes of the LBP receptor domain can specifically interact with VEEV E2 protein and tick-borne encephalitis virus (TBEV) E protein. Mapping of binding sites of MABs 4F6 and 8E4 with LBP by constructing short deletion fragments of the human LBP molecule has shown that MAB 8E4 interacts with the fragment of amino acid residues 187-210, and MAB 4F6 interacts with the fragment of residues 263-278 of LBP protein, which is represented by two TEDWS peptides separated by four amino acid residues. This suggested that the LBP receptor domain interacting with VEEV E2 and TBEV E viral proteins is located at the C-terminal fragment of the LBP molecule. A model of the spatial structure of the LBP receptor domain distally limited by four linear loops (two of which are represented by experimentally mapped regions of amino acid residues 187-210 and 263-278) as well as the central beta-folded region turning into the alpha-helical site including residues 200-216 of the LBP molecule and providing for the interaction with the laminin-1 molecule has been proposed.
Recombinant polypeptide containing the 260-466 amino acid sequence of West Nile virus (WNV) strain LEIV-Vlg99-27889-human glycoprotein E (gpE, E(260-466)) was constructed. Immunochemical similarity between the E(260-466) and gpE of WNV was proven by enzyme immunoassay (EIA), immunoblot, competitive EIA, hemagglutination inhibition, and neutralization tests using polyclonal and monoclonal antibodies against the viral gpE and recombinant E(260-466). Polypeptide E(260-466) induced formation of virus neutralizing and cross-reactive antibodies that were interactive with various epitopes of this recombinant protein. It is shown by evaluation of the interaction of E(260-466) with one of the proposed cell receptors of WNV that average E(260-466)-alphaVbeta3 integrin-specific interaction force measured using atomic force spectroscopy was 80 and 140 pN for single and double interactions, correspondingly. Taken together with previously described interaction between laminin-binding protein (LBP) and WNV gpE domain II, it is proposed that WNV gpE can interact specifically with two cellular proteins (LBP and alphaVbeta3 integrin) during virus entry.
ELISA and Western blot immunochemical data attest an effective and highly specific interaction of the surface glycoprotein E domain II (DII) of the tick born encephalitis and Dengue viruses with the laminin binding protein (LBP). Based on a highly conservative structure of the DII in different flaviviruses we propose a similarly effective interaction between the LBP and the DII of the surface glycoprotein E of the West Nile virus. We report the results of studies of this interaction by immunochemical and single molecule force spectroscopy methods. The specific binding between these species is confirmed by both methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.