BackgroundNeuronal ceroid lipofuscinoses (NCLs) are a group of neurodegenerative disorders characterized by an accumulation of lipofuscin in the body's tissues. NCLs are associated with variable age of onset and progressive symptoms including seizures, psychomotor decline, and loss of vision.MethodsWe describe the clinical and molecular characteristics of four Russian patients with NCL (one female and three males, with ages ranging from 4 to 5 years). The clinical features of these patients include cognitive and motor deterioration, seizures, stereotypies, and magnetic resonance imaging signs of brain atrophy. Exome sequencing was performed to identify the genetic variants of patients with NCL. Additionally, we tested 6,396 healthy Russians for NCL alleles.ResultsWe identified five distinct mutations in four NCL‐associated genes of which two mutations are novel. These include a novel homozygous frameshift mutation in the CLN6 gene, a compound heterozygous missense mutation in the KCTD7 gene, and previously known mutations in KCTD7, TPP1, and MFSD8 genes. Furthermore, we estimated the Russian population carrier frequency of pathogenic and likely pathogenic variants in 13 genes associated with different types of NCL.ConclusionOur study expands the spectrum of mutations in lipofuscinosis. This is the first study to describe the molecular basis of NCLs in Russia and has profound and numerous clinical implications for diagnosis, genetic counseling, genotype–phenotype correlations, and prognosis.
BackgroundLiddle syndrome is a monogenic disease with autosomal dominant inheritance. Basic characteristics of this disease are hypertension, reduced concentration of aldosterone and renin activity, as well as increased excretion of potassium leading to low level of potassium in serum and metabolic alkalosis. The cause of Liddle syndrome is missense or frameshift mutations in SCNN1A, SCNN1B, or SCNN1G genes that encode epithelial sodium channel subunits.Case presentationWe describe a family with Liddle syndrome from Russia. 15-year-old proband has arterial hypertension, hypokalemia, hyporeninemia, metabolic alkalosis, but aldosterone level is within the normal range. At 12 years of age, arterial hypertension was noticed for the first time. We identified novel frameshift mutation c.1769delG (p.Gly590Alafs) in SCNN1G, which encodes the γ subunit of ENaC in vertebrates. The father and younger sister also harbor this heterozygous deletion. Treatment with amiloride of proband and his sister did not normalize the blood pressure, but normalized level of plasma renin activity.ConclusionsOur results expand the mutational spectrum of Liddle syndrome and provide further proof that the conserved PY motif is crucial to control of ENaC activity. Genetic analysis has implications for the management of hypertension, specific treatment with amiloride and counselling in families with Liddle syndrome.
BackgroundNeuronal ceroid lipofuscinoses (NCLs) are the most common autosomal recessive neurodegenerative disorders in children. Clinical manifestations include progressive cognitive decline, motor impairment, ataxia, visual loss, seizures and early death. To date more than 440 NCL-causing mutations in 13 genes are known.Case presentationWe report clinical and genetic characteristics of a 5-year-old girl affected by ceroid lipofuscinosis type 7 (NCL7). She had progressive motor and mental deterioration since the age of 2,5 years. Later she developed progressive vision loss, stereotypies, action myoclonus and epilepsy. By the age of 5 years she stopped walking. Based on symptoms, diagnosis of Rett syndrome was suggested, but no abnormalities were detected in MeCP2. We identified a novel homozygous mutation in MFSD8 gene (c.525 T > A, p.Cys175Ter). To our knowledge, this is the first report of MFSD8 gene mutation in a Russian patient with variant late-infantile NCL.ConclusionsOur results enlarge mutational spectrum of ceroid lipofuscinosis type 7 and demonstrate tremendous diagnosis value of exome sequencing for pediatric NCLs. Also we confirmed that NCL should be suspected in patients with Rett-like phenotype at onset and negative MECP2 mutation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.