Application of the phenomenon of self-organization for the development of wear resistant materials has been reviewed. For this purpose the term of self-organization and dissipative structures as applied to tribology have been discussed. The applications of this phenomenon have been shown in order to develop new wear resistant-and antifriction materials. Specific examples have been shown for the application of the self-organization phenomenon and the generation of dissipative structures for the formation of tribotechnical materials with enhanced wear resistance for current collecting materials and antifriction materials of bearings.
Abstract:The seizure process has been considered from the non-equilibrium thermodynamics and self-organization theory standpoints. It has been testified that, for the intensification of powder mix particles seizing with the substrate during spraying, it is required that relatively light components of the powder mix should be preferably transferred into the friction zone. The theory inferences have been experimentally confirmed, as exemplified by the gas dynamic spray of copper-zinc powders mix.
The possibility of changing bronze in the manufacture of monometallic cast plain bearings with multicomponent aluminum antifriction alloys is considered. Due to alloying of aluminum with tin, lead, copper, zinc, silicon, magnesium and titanium, it was possible to create alloys with increased ability to adapt friction surfaces. According to laboratory tests, the main results of which are given in the article, it is proved that aluminum alloys on a complex of mechanical and tribotechnical properties are close or superior to the investigated bronze BrO4C4S17. Laboratory tests have shown the possibility of manufacturing monometallic plain bearings from experimental cast aluminum alloys, which by mechanical properties are not inferior to the most solid among antifriction bronzes - bronze BrO4C4S17. On a complex of tribotechnical properties, experimental alloys exceed bronze. Due to their high-fusibility, lower density, lower cost and better workability, aluminum alloys have an almost 3-5-fold advantage over economic indicators before tin bronzes. The scope of the proposed alloys will be determined in the course of bench and operational tests. To date, an experimental batch of monometallic bearings of turbochargers TK 33N-02 has been manufactured from the alloy of the AO6S3M4CT series of “Spets Dizel Servis” (Novosibirsk), which successfully passed the bench tests. Bushings 3404.00.112, 3404.00.032 and bearings 3409.00.20, made from an experimental alloy, showed the possibility of replacing the standard bronze BrO8S12 in these turbochargers. It is advisable to carry out operational tests of bearing sleeves from the alloy AO6S3M4CT for turbochargers TK 34, TK 30 and TK 33, as well as bearing inserts for diesel locomotives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.