Currently, unmanned aerial vehicles (UAVs) can be used in topographic works, condition monitoring and diagnostics of extended engineering structures, delivering goods to hard-to-reach places, etc. To provide the widespread UAVs applications and raise the number of tasks to be solved through their using, it is necessary to increase their autonomy degree in terms of navigation support, in particular. Unmanned aerial vehicles (UAV) control systems for autonomous navigation use the strap-down inertial navigation systems (SINS) based on various types of gyroscopes. SINS based on the laser gyroscopes, which have a large mass, have the best accuracy. UAVs with a payload mass that is commensurable with the mass of navigation equipment require optimization of SINS characteristics. An optimization method has been developed to enable obtaining a Pareto set for the mass and accuracy of SINS based on laser gyroscopes. A comprehensive assessment of the characteristics of SINS and UAV carrier with different payload mass has been performed. Various SINS correction methods are considered when satellite navigation is unavailable.For overland flights, the correlation-extreme navigation systems (CENS) and SLAM methods (for simultaneous localisation and mapping) can be used. CENS require a reference lay-of-the-land description and a sufficient density of landmarks. In navigation based on SLAM algorithms, there is no need in the reference lay-of-the-land description, and the initial data can be obtained through the optical sensors under appropriate condition of the atmospheric path.Regardless of the condition of the atmospheric path, type of the underlying surface and its information available in detail, the UAV coordinates can be determined by Doppler dead reckoning using a Doppler system (DISS). At low and medium altitudes SINS correction is possible, only heading sensor data are needed to calculate the path angle.In combining with DISS and 3D Flash Ladar sensors (for implementing SLAM algorithms), it is more optimal to use low-accuracy SINS based on fibre-optic gyroscopes rather than laser gyro-based systems.The results obtained can be used when developing navigation systems for medium, light and heavy-medium UAVs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.