A comparative analysis of protein and peptide profile, biological activities of hydrolysed bovine colostrum and whey was performed. It was found that the depth of proteolysis, qualitative and quantitative composition of protein component of samples determined the level of their antiradical, antimutagenic, antimicrobial and antigenic properties. SDS electrophoresis of experimental samples revealed more extensive protein hydrolysis in the course of alcalase treatment than during enzymatic reaction with neutrase. Using fluorimetric method the influence of hydrolysis with endopeptidases and fermentation with Lactobacillus acidophilus on antioxidant properties of milk proteins was established. 1.7–5.5 times increase in antiradical activity of derived samples in comparison with native proteins was recorded. Reduction in mutation rate induced by whey hydrolysate in tested strain Salmonella typhimurium TA 98 ranged from 15.7 % to 49.2 %, whereas antimutagenic effect on strain TA 100 varied from 18.8 % to 52.1 %, exceeding the similar values shown by colostrum hydrolysates. Samples of colostrum and whey hydrolysed with alcalase are enriched with specific short-chain peptides which determine their relatively high antimutagenic and antiradical properties. Immunoprecipitation reaction demonstrated effective splitting of β lactoglobulin by alcalase, resulting in production of hypoallergenic hydrolysates. It was found by impedimetric technique that neutrase-cleaved colostrum accounted for maximum inhibition of Escherichia coli АТСС 8739 (82 %) and Staphylococcus aureus АТСС 6538 (19 %). Samples of enzymatic hydrolysates of colostrum and whey proteins with confirmed antimicrobial, antimutagenic and antioxidant action were obtained. The use of hydrolysed and fermented colostrum with elevated antioxidant potential in special nutrition appears extremely promising.
Enzymatic protein hydrolysates of milk are used as a protein component of functional foods intended for children, athletes, and senior citizens. They are easy to absorb and possess hypoallergenic, antioxidant, antimicrobial, and antimutagenic properties. However, the peptides in their composition have a bitter taste, which limits the use of milk protein hydrolysates in food industry. Functional foods are often fortified with fat-soluble vitamins and other hydrophobic ingredients. They require multicomponent compositions that contain both hydrophilic and hydrophobic compounds. Complexes of β-cyclodextrins with peptides of whey protein hydrolyzates and fat-soluble vitamins can solve this problem. The present research featured nanocomplexes of β-cyclodextrins with whey peptides and their multicomponent mixes with vitamins D3 and A. The methodology involved HPLC-MS, electrophoresis, thermogravimetry, and fluorimetry. The obtained clathrates were used to develop new multicomponent compositions for functional nutrition. The article introduces a new production method for hypoallergenic peptide fractions with a molecular weight of 300–1500 Da from enzymatic whey protein hydrolyzates. The obtained peptides contained 6–14 amino acid residues and demonstrated hypoallergenic properties because they contained no antigenic determinants capable of causing IgE synthesis. The complexes of inclusion contained hydrolyzate peptides of dairy proteins and fat-soluble vitamins A and D3. The research revealed some antioxidant and antimutagenic properties, as well as the toxicological and hygienic profile of the clathrates. The resulting peptide clathrates had a less bitter taste. The inclusion complexes of fat-soluble vitamins D3:β-cyclodextrins, and A:β-cyclodextrins could be converted from an olive oil solution into a soluble powder. 100 g of the multicomponent composite contained 47.0 g of whey protein hydrolyzate of low molecular weight fraction peptides, 1.06 mg of vitamin D3 (42 500 IU), 3.44 mg of vitamin A (10 000 IU), and 1.54 g of olive oil. The article also describes the structural and functional properties of the inclusion complexes. Nanocomplexes of whey protein hydrolyzate of low molecular weight fraction peptides:β-cyclodextrins, D3:β-cyclodextrins, and A:β-cyclodextrins and their multicomponent composite were tested for toxicological and hygienic properties using Tetrahymena pyriformis. They appeared to belong to the 5th hazard class in terms of the average lethal dose (non-hazardous substances). The obtained powder forms of fat-soluble vitamins and peptides are easily dosed and can be used to design new functional foods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.