The production of 3,4-dihydroxybenzoic acid (3,4-DHBA or protocatechuate) is a relevant task owing to 3,4-DHBA’s pharmaceutical properties and its use as a precursor for subsequent synthesis of high value-added chemicals. The microbial production of 3,4-DHBA using dehydroshikimate dehydratase (DSD) (EC: 4.2.1.118) has been demonstrated previously. DSDs from soil-dwelling organisms (where DSD is involved in quinate/shikimate degradation) and from Bacillus spp. (synthesizing the 3,4-DHBA-containing siderophore) were compared in terms of the kinetic properties and their ability to produce 3,4-DHBA. Catabolic DSDs from Corynebacterium glutamicum (QsuB) and Neurospora crassa (Qa-4) had higher Km (1 and 0.6 mM, respectively) and kcat (61 and 220 s−1, respectively) than biosynthetic AsbF from Bacillus thuringiensis (Km~0.04 mM, kcat~1 s−1). Product inhibition was found to be a crucial factor when choosing DSD for strain development. AsbF was more inhibited by 3,4-DHBA (IC50~0.08 mM), and Escherichia coli MG1655 ΔaroE PlacUV5-asbFattφ80 strain provided only 0.2 g/L 3,4-DHBA in test-tube fermentation. Isogenic strains MG1655 ΔaroE PlacUV5-qsuBattφ80 and MG1655 ΔaroE PlacUV5-qa-4attφ80 expressing QsuB and Qa-4 with IC50 ~0.35 mM and ~0.64 mM, respectively, accumulated 2.7 g/L 3,4-DHBA under the same conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.