We reviewed the effects of elevated ozone (O 3 ), alone and in combination with elevated carbon dioxide (CO 2 ) on primary and secondary metabolites of trees and performance of insect herbivores by means of meta-analysis. Our database consisted of 63 studies conducted on 22 species of trees and published between 1990 and 2005. Ozone alone had no overall effect on concentrations of carbohydrates or nutrients, whereas in combination with CO 2 , elevated O 3 reduced nutrient concentrations and increased carbohydrate concentrations. In contrast to primary metabolites, concentrations of phenolics and terpenes were significantly increased by 16% and 8%, respectively, in response to elevated O 3 . Effects of ozone in combination with elevated CO 2 were weaker than those of ozone alone on phenolics, but stronger than those of ozone alone on terpenes. The magnitude of secondary metabolite responses depended on the type of ozone exposure facility and increased in the following order: indoor growth chamber o open-top chamber o free-air ozone exposure. The results of meta-analysis demonstrated that, in terms of leaf chemistry, angiosperms are more responsive to elevated O 3 than gymnosperms, as shifts in concentrations of carbohydrate and phenolics were observed in the former, but not in the latter. Elevated O 3 had positive effects on some indices of insect performance: pupal mass increased and larval development time shortened, but these effects were counteracted by elevated CO 2 . Therefore, despite the observed increase in secondary metabolites, elevated O 3 tends to increase tree foliage quality for herbivores, but elevated CO 2 may alleviate these effects. Our meta-analysis clearly demonstrated that effects of elevated O 3 alone on leaf chemistry and some indices of insect performance differed from those of O 3 1 CO 2 , and therefore, it is important to study effects of several factors of global climate change simultaneously.
Rapid decline in the density of leaf trichomes and in the concentrations of flavonoid aglycones with leaf age suggests that the functional role of trichomes is likely to be most important at the early stages of birch leaf development.
The morphology, ultrastructure, density and distribution of trichomes on leaves of Betula pendula, B. pubescens ssp. pubescens, B. pubescens ssp. czerepanovii and B. nana were examined by means of light, scanning and transmission electron microscopy. The composition of flavonoids in ethanolic leaf surface extracts was analysed by high pressure liquid chromatography. All taxa examined contained both glandular and non-glandular trichomes (short and/or long hairs) but differed from each other in trichome ultrastructure, density and location on the leaf. Leaves of B. pubescens were more hairy than those of B. pendula, but the latter species had a higher density of glandular trichomes. Of the two subspecies of B. pubescens, leaves of ssp. pubescens had more short hairs on the leaf surface and four times the density of glandular trichomes of leaves of ssp. czerepanovii, whereas, in the latter subspecies, short hairs occurred largely on leaf veins, as in B. nana. The glandular trichomes were peltate glands, consisting of medullar and cortical cells, which differed structurally. Cortical cells possessed numerous small, poorly developed plastids and small vacuoles, whereas medullar cells had several large plastids with well-developed thylakoid systems and fewer vacuoles. In B. pubescens subspecies, vacuoles of the glandular cells contained osmiophilic deposits, which were probably phenolic, whereas in B. pendula, vacuoles of glandular trichomes were characterized by the presence of numerous myelin-like membranes. The composition of epicuticular flavonoids also differed among species. The two subspecies of B. pubescens and B. nana shared the same 12 compounds, but five of these occurred only in trace amounts in B. nana. Leaf surface extracts of B. pendula contained just six flavonoids, three of which occurred only in this species. In summary, the structure, density and distribution of leaf trichomes and the composition of epicuticular flavonoids represent good taxonomic markers for Finnish birch species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.