Self‐disintegrating microcapsules were prepared by encapsulating a highly active mix of proteases (Pronase®) into biodegradable polyelectrolyte shells. Pronase was captured by micron‐sized calcium carbonate particles that were subsequently embedded into onion‐like shells of poly(L‐arginine) and poly(L‐aspartic acid). EDTA treatment was used to extract the calcium carbonate constituents from the resulting core‐shell particles. As a consequence, Pronase was released into the capsule interior and started to digest the surrounding polyelectrolyte shell. Lifetimes of such self‐disintegrating capsules could be successfully adjusted to seconds, hours or days by varying the amount of encapsulated Pronase. The enzyme‐mediated, sustained release of encapsulated DNA is presented as a prospective application in drug delivery.magnified image
To accelerate the healing processes in wound repair, attempts have been repeatedly made to use growth factors including thrombin and its peptide fragments. Unfortunately, the employment of thrombin is limited because of its high liability and pro-inflammatory actions at high concentrations. Some cellular effects of thrombin in wound healing are mediated by the activation of protease activated receptor-1 (PAR-1). The thrombin receptor agonist peptide (TRAP:SFLLRN) activates this receptor and mimics the effects of thrombin, but TRAP is a relatively weak agonist. We speculated that the encapsulated peptide may be more effective for PAR-1 activation than nonimmobilized peptide and developed a novel method for TRAP encapsulation in hydrogel films based on natural and synthetic polymers. The effects of an encapsulated TRAP in composite poly(N-vinyl caprolactam)-calcium alginate (PVCL) hydrogel films were investigated in a mouse model of wound healing. On day 7 the wound sizes decreased by about 60% under TRAP-chitosan-containing PVCL films, as compared with control films without TRAP. In the case of TRAP-polylysine-containing films no significant decrease in wound sizes was found. The fibroblast/macrophage ratio increased under TRAP-containing films on day 3 and on day 7. The number of proliferating fibroblasts increased to 150% under TRAP-chitosan films on day 7 as compared with control films. The number of [3H]-thymidine labeled endothelial and epithelial cells in granulation tissues was also enhanced. Thus, the immobilized TRAP to PVCL-chitosan hydrogel films were found to promote wound healing following the stimulation of fibroblast and epithelial cell proliferation and neovascularization. Furthermore, TRAP was shown to inhibit the secretion of the inflammatory mediator PAF from stimulated rat peritoneal mast cells due to augmentation of NO release from the mast cells. The encapsulated TRAP is suggested to accelerate wound healing due to the anti-inflammatory effects and earlier development of the proliferative phase of wound healing.
This study shows that the size of the nanocarrier significantly matters, likely due to highly different interactions with cells and tissues. Graphical Abstract A study on the effect of the size of cholecciferol nano-emulsions, on their in vivo becoming, through X-ray imaging modality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.