In the design of thermally stressed units in the sectors of mechanical engineering, aviation, aerospace, energetics it is often necessary to have information about the formation of the contact thermal resistance resulting from the discrete nature of parts metal surfaces contacting. While passing through the section zones of heat flows the temperature gradient increases, thus reducing the heat transfer capability of the contact junction and leads to thermal expansion of the constituent elements of the systems, relative shifts and warpages. The process of heat transfer through the zone of contact between metal surfaces having deviation of shapes in the form of nonflatness or waviness under conditions suitable to small mechanical loads is considered. The model of formation of the contact thermal resistance (CTR), in case of double contraction of the heat flow of channel and contact mаcrospots, caused by nonflatness or waviness, and then to microspots caused by roughness. Subject to the provisions of the theory of mechanical contacting of solids theoretical curves is derived describing the contact thermal resistance for compounds with surfaces having microdeviation or waviness operating in the regime of small mechanical loads. The results of physical experiments give satisfactory agreement with the calculated data. It was established that the presence of nonflatness or waviness on the contact surfaces increases CTR significantly as compared with rough surfaces. Increase of CTR is explained by the increase of wave height or equivalent nonflatness
In connection with the intensive development of new areas of technology, where heat-stressed systems are widely represented, there is urgent need of directed thermoregulation. To control the thermal conditions in composite systems it is required, in particular, to create connections with good insulation. The problem of increasing contact thermal resistance between the metal surfaces by introducing of mesh screens made of metal wire into the zone section is examined on condition the application of small loads not exceeding 1 MPa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.