The findings support the hypothesis of the association processes of lipid peroxidation and endogenous intoxication with the development of lung cancer. It confirmed the dependence of these parameters on the histological type of tumor, the presence / absence and the degree of prevalence of remote and regional metastasis.
It is known that the monitoring of superoxide dismutase and catalase activity allows to assess the level of influence of environmental situation in particular chemical factors of ecosystem on public health. "Oxidative stress" is one of the mechanisms of environmental influence on human organism. Considering complex character of catalase and superoxide dismutase activity change interpretation of the obtained results can be difficult, thus it is more effective to use integrated indices in particular, antioxidant activity. The aim of the study was to develop approaches to assessing the severity of "oxidative stress" by determining the activity of antioxidant enzymes and antioxidant activity of human saliva and study variations of these parameters in norm. It is shown that activity of individual antioxidant enzymes varies even during the day, and therefore the interpretation of these values і s difficult. Antioxidant activity can be a most promising indicator for assessing the intensity of the "oxidative stress" of biological fluids, such as saliva. Method of determining of antioxidant activity saliva is picked up using 2,6-dichlorophenolindophenol. Temporal and physiological characteristics are determined for the dynamics of saliva antioxidant activity in norm, the stability of this parameter is shown, taking into account age and gender characteristics.
So far optimization problems for diagnostics and prognostication aids remained relevant for lung cancer as a leader in the structure of cancers. Objective: a search for regularities of changes in the saliva enzyme activity in patients with nonsmall cell lung cancer. In the case-control study, 505 people took part, divided into 2 groups: primary (lung cancer, n=290) and control (conventionally healthy, n=215). All the participants went through a questionnaire survey, saliva biochemical counts, and a histological verification of their diagnosis. The enzyme activity was measured with spectrophotometry. Between-group differences were measured with the nonparametric test. It was shown that in terms of lung cancer, we observe metabolic changes, described with the decreased de Ritis coefficient (p
The aim of the study was to explore the option of using sialic acid of saliva as a marker for primary and differential diagnosis of lung cancer.Materials and Methods. The study included 1903 subjects divided as follows: the main group (lung cancer, n=337, and nonmalignant lung diseases, n=108), the comparison group (other types of oncological diseases, n=1033), and the control group (generally healthy, n=425). All participants filled the medical questionnaires and presented the histological verification of their diagnoses; then they underwent biochemical examination of their saliva samples. The level of sialic acids and the content of mucin in the saliva were determined spectrophotometrically.Results. We found that the average level of sialic acids in the control group (0.270±0.037 mmol/L) was significantly higher than that in lung cancer (0.138±0.006 mmol/L) or non-tumor diseases of the lungs (0.148±0.003 mmol/L). The saliva content of sialic acids did not significantly differ between various histological types of lung cancer (0.175±0.027 and 0.166±0.024 mmol/L for squamous cell lung cancer and adenocarcinoma, respectively). We also noted that in patients with metastatic lung cancer, the level of sialic acids in the saliva was the lowest as compared with the generally healthy subjects.Conclusion. The level of sialic acids in the saliva decreases both in patients with lung cancer and in patients with non-malignant lung diseases. These results rationalize the option of using this parameter for the primary diagnosis of lung disorders as a whole; however, for the differential diagnosis of various lung diseases, the level of saliva sialic acids is of little value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.