We report detailed functional analyses and genotype-phenotype correlations in 392 individuals carrying disease-causing variants in SCN8A, encoding the voltage-gated Na+ channel NaV1.6, with the aim of describing clinical phenotypes related to functional effects. Six different clinical subgroups could be identified: 1) Benign familial infantile epilepsy (BFIE) (n = 15, normal cognition, treatable seizures), 2) intermediate epilepsy (n = 33, mild ID, partially pharmaco-responsive), 3) developmental and epileptic encephalopathy (DEE, n = 177, severe ID, majority pharmaco-resistant), 4) generalized epilepsy (n = 20, mild to moderate ID, frequently with absence seizures), 5) unclassifiable epilepsy (n = 127), and 6) neurodevelopmental disorder without epilepsy (n = 20, mild to moderate ID). Groups 1–3 presented with focal or multifocal seizures (median age of onset: four months) and focal epileptiform discharges, whereas the onset of seizures in group 4 was later (median: 42 months) with generalized epileptiform discharges. We performed functional studies expressing missense variants in ND7/23 neuroblastoma cells and primary neuronal cultures using recombinant tetrodotoxin-insensitive human NaV1.6 channels and whole-cell patch-clamping. Two variants causing DEE showed a strong gain-of-function (GOF, hyperpolarising shift of steady-state activation, strongly increased neuronal firing rate), and one variant causing BFIE or intermediate epilepsy showed a mild GOF (defective fast inactivation, less increased firing). In contrast, all three variants causing generalized epilepsy induced a loss-of-function (LOF, reduced current amplitudes, depolarising shift of steady-state activation, reduced neuronal firing). Including previous studies, functional effects were known for 170 individuals. All 136 individuals carrying a functionally tested GOF variant had either focal (97, groups 1–3), or unclassifiable epilepsy (39), whereas 34 with a LOF variant had either generalized (14), no (11) or unclassifiable (6) epilepsy; only three had DEE. Computational modeling in the GOF group revealed a significant correlation between the severity of the electrophysiological and clinical phenotypes. GOF variant carriers responded significantly better to sodium channel blockers (SCBs) than to other anti-seizure medications, and the same applied for all individuals of groups 1–3. In conclusion, our data reveal clear genotype-phenotype correlations between age at seizure onset, type of epilepsy and gain- or loss-of-function effects of SCN8A variants. Generalized epilepsy with absence seizures is the main epilepsy phenotype of LOF variant carriers and the extent of the electrophysiological dysfunction of the GOF variants is a main determinant of the severity of the clinical phenotype in focal epilepsies. Our pharmacological data indicate that SCBs present a treatment option in SCN8A-related focal epilepsy with onset in the first year of life.
We report detailed functional analyses and genotype-phenotype correlations in 433 individuals carrying disease-causing variants in SCN8A, encoding the voltage-gated Na+ channel NaV1.6. Five different clinical subgroups could be identified: 1) Benign familial infantile epilepsy (BFIE) (n=17, normal cognition, treatable seizures), 2) intermediate epilepsy (n=36, mild ID, partially pharmacoresponsive), 3) developmental and epileptic encephalopathy (DEE, n=191, severe ID, majority pharmacoresistant), 4) generalized epilepsy (n=21, mild to moderate ID, frequently with absence seizures), and 5) affected individuals without epilepsy (n=25, mild to moderate ID). Groups 1-3 presented with early-onset (median: four months) focal or multifocal seizures and epileptic discharges, whereas the onset of seizures in group 4 was later (median: 39 months) with generalized epileptic discharges. The epilepsy was not classifiable in 143 individuals. We performed functional studies expressing missense variants in ND7/23 neuroblastoma cells and primary neuronal cultures using recombinant tetrodotoxin insensitive human NaV1.6 channels and whole-cell patch clamping. Two variants causing DEE showed a strong gain-of-function (GOF, hyperpolarising shift of steady-state activation, strongly increased neuronal firing rate), and one variant causing BFIE or intermediate epilepsy showed a mild GOF (defective fast inactivation, less increased firing). In contrast, all three variants causing generalized epilepsy induced a loss-of-function (LOF, reduced current amplitudes, depolarising shift of steady-state activation, reduced neuronal firing). Including previous studies, functional effects were known for 165 individuals. All 133 individuals carrying GOF variants had either focal (76, groups 1-3), or unclassifiable epilepsy (37), whereas 32 with LOF variants had either generalized (14), no (11) or unclassifiable (5) epilepsy; only two had DEE. Computational modeling in the GOF group revealed a significant correlation between the severity of the electrophysiological and clinical phenotypes. GOF variant carriers responded significantly better to sodium channel blockers (SCBs) than to other anti-seizure medications, and the same applied for all individuals of groups 1-3. In conclusion, our data reveal clear genotype-phenotype correlations between age at seizure onset, type of epilepsy and gain- or loss-of-function effects of SCN8A variants. Generalized epilepsy with absence seizures is the main epilepsy phenotype of LOF variant carriers and the extent of the electrophysiological dysfunction of the GOF variants is a main determinant of the severity of the clinical phenotype in focal epilepsies. Our pharmacological data indicate that SCBs present a therapeutic treatment option in early onset SCN8A-related focal epilepsy.
Purpose The purpose of this study was to analyze the natural history and phenotypic overlap of patients with microcephaly and a chorioretinopathy or familial exudative vitreoretinopathy (FEVR) ocular phenotype caused by mutations in KIF11 , TUBGCP4 , or TUBGCP6. Methods Patients diagnosed with congenital microcephaly and chorioretinopathy or FEVR were included. Molecular investigations consisted of targeted genetic sequencing. Data from medical records, ophthalmologic examination and imaging, electroretinography, and visual fields were analyzed for systemic and ophthalmic features and evidence of posterior segment disease progression. Results Twelve patients from 9 families were included and had a median of 8 years of follow-up. Nine patients had KIF11 variants, two had heterozygous TUBGCP6 variants, and one had heterozygous variants in TUBGCP4. All patients had reduced visual function and multiple individuals and families showed features of both chorioretinopathy and FEVR. Progression of posterior segment disease was highly variable, with some degree of increased atrophy of the macula or peripheral retina or increased vitreoretinal traction observed in 9 of 12 patients. Conclusions Microcephaly due to mutations in KIF11 , TUBGCP4 , or TUBGCP6 can be associated with retinal disease on a spectrum from chorioretinal atrophy to FEVR-like posterior segment changes. Visually significant disease progression can occur and patients should be monitored closely by a team experienced in ophthalmic genetics.
Background Hereditary ophthalmic pathology is a genetically heterogeneous group of diseases that occur either as an isolated eye disorder or as a symptom of hereditary syndromes (chromosomal or monogenic). Thus, a diagnostic search in some cases of ophthalmic pathology can be time- and cost-consuming. The most challenging situation can arise when prenatal diagnosis is needed during an ongoing pregnancy. Case presentation A family was referred to the Research Centre for Medical Genetics (RCMG) for childbirth risk prognosis at 7–8 week of gestation because a previous child, a six-year-old boy, has congenital aniridia, glaucoma, retinal detachment, severe psychomotor delay, and lack of speech and has had several ophthalmic surgeries. The affected child had been previously tested for PAX6 mutations and 11p13 copy number variations, which revealed no changes. Considering the lack of pathogenic changes and precise diagnosis for the affected boy, NGS sequencing of clinically relevant genes was performed for the ongoing pregnancy; it revealed a novel hemizygous substitution NM_000266.3(NDP):c.385G > T, p.(Glu129*), in the NDP gene, which is associated with Norrie disease (OMIM #310600). Subsequent Sanger validation of the affected boy and his mother confirmed the identified substitution inherited in X-linked recessive mode. Amniotic fluid testing revealed the fetus was hemizygous for the variant and lead to the decision of the family to interrupt the pregnancy. Complications which developed during the termination of pregnancy required hysterectomy due to medical necessity. Conclusions Clinical polymorphism of hereditary ophthalmic pathology can severely complicate establishment of an exact diagnosis and make it time- and cost-consuming. NGS appears to be the method-of-choice in complicated cases, and this could substantially hasten the establishment of a diagnosis and genetic risk estimation.
Описано большое количество моногенных заболеваний, в клинической картине которых наблюдаются судороги. Среди них особое место занимают ранние эпилептические энцефалопатии (РЭЭ)-генетически гетерогенная группа заболеваний, характеризующихся манифестацией судорог до 2-летнего возраста и тяжелым прогрессирующим течением. К настоящему времени идентифицированы 58 генетических вариантов РЭЭ. Цель исследования-анализ частоты встречаемости и клинико-генетических характеристик РЭЭ II типа в выборке больных из популяции России, выявленных в результате секвенирования экзома нового поколения.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.