X-ray topography is a group of methods for obtaining diffraction images of structural defects in crystals. Among them, section topography techniques are distinguished by their abilities in acquiring quantitative information about defects based on the analysis of the images. For this purpose, special applications of the dynamic theory of X-ray diffraction are being developed. The interference of wave fields excited in a crystal by an X-ray beam is the basis of the section methods. Their sensitivity to weak lattice distortions is much higher than that of other X-ray methods. This review describes the physical foundations and implementation of the section topography techniques, as well as the results of computer simulating the wave field in a crystal. We present some examples of solving materials science and microelectronics problems and briefly describe the section topography using synchrotron radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.