We study experimentally the influence of the laser-induced temperature gradient on the parameters of propagating magnetostatic surface waves in thin film of the ferromagnetic metallic alloy Galfenol Fe0.81Ga0.19. The material has a pronounced magnetocrystalline anisotropy and exhibits the long-distance propagation of magnetostatic surface waves excited with femtosecond laser pulses. The excitation pulse heats up the sample locally, what leads to the spatial-temporal change of magnetization and anisotropy parameters of the film, and thus excites the magnetostatic surface waves. We show experimentally that the spectrum of the excited waves narrows as they propagate in such a gradient medium. By changing the orientation of external magnetic field with respect to anisotropy axes of the sample, we control whether the low- or high-frequency part of the spin waves spectrum is suppressed.
The rate and pathways of relaxation of a magnetic medium to its equilibrium following excitation with intense and short laser pulses are the key ingredients of ultrafast optical control of spins. Here we study experimentally the evolution of the magnetization and magnetic anisotropy of thin films of a ferromagnetic metal galfenol (Fe0.81Ga0.19) resulting from excitation with a femtosecond laser pulse. From the temporal evolution of the hysteresis loops we deduce that the magnetization MS and magnetic anisotropy parameters K recover within a nanosecond, and the ratio between K and MS satisfies the thermal equilibrium's power law in the whole time range spanning from a few picoseconds to 3 nanoseconds. We further use the experimentally obtained relaxation times of MS and K to analyze the laser-induced precession and demonstrate how they contribute to its frequency evolution at the nanosecond timescale.
Development of a control unit and power source for an implantable assisted circulation pump is discussed. The device for left ventricle assistance was developed in the Shumakov Federal pro vides a basis for a safe portable pacemaker meeting the requirements of extracorporeal circulation systems (ECS). The aspects of engineering, structural, and software support of the system are discussed. An implanted axial pump (IAP) of the ECS for artificial left cardiac ventricle (ALCV) is considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.