We report detailed functional analyses and genotype-phenotype correlations in 392 individuals carrying disease-causing variants in SCN8A, encoding the voltage-gated Na+ channel NaV1.6, with the aim of describing clinical phenotypes related to functional effects. Six different clinical subgroups could be identified: 1) Benign familial infantile epilepsy (BFIE) (n = 15, normal cognition, treatable seizures), 2) intermediate epilepsy (n = 33, mild ID, partially pharmaco-responsive), 3) developmental and epileptic encephalopathy (DEE, n = 177, severe ID, majority pharmaco-resistant), 4) generalized epilepsy (n = 20, mild to moderate ID, frequently with absence seizures), 5) unclassifiable epilepsy (n = 127), and 6) neurodevelopmental disorder without epilepsy (n = 20, mild to moderate ID). Groups 1–3 presented with focal or multifocal seizures (median age of onset: four months) and focal epileptiform discharges, whereas the onset of seizures in group 4 was later (median: 42 months) with generalized epileptiform discharges. We performed functional studies expressing missense variants in ND7/23 neuroblastoma cells and primary neuronal cultures using recombinant tetrodotoxin-insensitive human NaV1.6 channels and whole-cell patch-clamping. Two variants causing DEE showed a strong gain-of-function (GOF, hyperpolarising shift of steady-state activation, strongly increased neuronal firing rate), and one variant causing BFIE or intermediate epilepsy showed a mild GOF (defective fast inactivation, less increased firing). In contrast, all three variants causing generalized epilepsy induced a loss-of-function (LOF, reduced current amplitudes, depolarising shift of steady-state activation, reduced neuronal firing). Including previous studies, functional effects were known for 170 individuals. All 136 individuals carrying a functionally tested GOF variant had either focal (97, groups 1–3), or unclassifiable epilepsy (39), whereas 34 with a LOF variant had either generalized (14), no (11) or unclassifiable (6) epilepsy; only three had DEE. Computational modeling in the GOF group revealed a significant correlation between the severity of the electrophysiological and clinical phenotypes. GOF variant carriers responded significantly better to sodium channel blockers (SCBs) than to other anti-seizure medications, and the same applied for all individuals of groups 1–3. In conclusion, our data reveal clear genotype-phenotype correlations between age at seizure onset, type of epilepsy and gain- or loss-of-function effects of SCN8A variants. Generalized epilepsy with absence seizures is the main epilepsy phenotype of LOF variant carriers and the extent of the electrophysiological dysfunction of the GOF variants is a main determinant of the severity of the clinical phenotype in focal epilepsies. Our pharmacological data indicate that SCBs present a treatment option in SCN8A-related focal epilepsy with onset in the first year of life.
Intellectual disability is the most common developmental disorder caused by chromosomal aberrations as well as single-nucleotide variants (SNVs) and small insertions/deletions (indels). Here we report identification of a novel, probably pathogenic mutation in the WHSC1 gene in a patient case with phenotype overlapping the features of Wolf-Hirschhorn syndrome. Deletions involving WHSC1 (Wolf-Hirschhorn syndrome candidate 1 gene) were described earlier in patients with Wolf-Hirschhorn syndrome. However, to our knowledge, single-point mutations in WHSC1 associated with any intellectual deficiency syndromes have not been reported. Using whole exome sequencing, we found a de novo nonsense mutation in WHSC1 (c.3412C>T, p.Arg1138Ter, NM_001042424.2) in patient with syndromic intellectual disability. This finding is challenging regarding a possible causative role of WHSC1 in intellectual disability syndromes, specifically Wolf-Hirschhorn syndrome. From the clinical standpoint, our finding suggests that next-generation sequencing along with chromosome microarray analysis (CMA) might be useful in genetic testing for patients with intellectual disability and dysmorphic features.
Heterotrimeric G proteins are immediate transducers of G protein-coupled receptors—the biggest receptor family in metazoans—and play innumerate functions in health and disease. A set of de novo point mutations in GNAO1 and GNAI1, the genes encoding the α-subunits (Gαo and Gαi1, respectively) of the heterotrimeric G proteins, have been described to cause pediatric encephalopathies represented by epileptic seizures, movement disorders, developmental delay, intellectual disability, and signs of neurodegeneration. Among such mutations, the Gln52Pro substitutions have been previously identified in GNAO1 and GNAI1. Here, we describe the case of an infant with another mutation in the same site, Gln52Arg. The patient manifested epileptic and movement disorders and a developmental delay, at the onset of 1.5 weeks after birth. We have analyzed biochemical and cellular properties of the three types of dominant pathogenic mutants in the Gln52 position described so far: Gαo[Gln52Pro], Gαi1[Gln52Pro], and the novel Gαo[Gln52Arg]. At the biochemical level, the three mutant proteins are deficient in binding and hydrolyzing GTP, which is the fundamental function of the healthy G proteins. At the cellular level, the mutants are defective in the interaction with partner proteins recognizing either the GDP-loaded or the GTP-loaded forms of Gαo. Further, of the two intracellular sites of Gαo localization, plasma membrane and Golgi, the former is strongly reduced for the mutant proteins. We conclude that the point mutations at Gln52 inactivate the Gαo and Gαi1 proteins leading to aberrant intracellular localization and partner protein interactions. These features likely lie at the core of the molecular etiology of pediatric encephalopathies associated with the codon 52 mutations in GNAO1/GNAI1.
We report detailed functional analyses and genotype-phenotype correlations in 433 individuals carrying disease-causing variants in SCN8A, encoding the voltage-gated Na+ channel NaV1.6. Five different clinical subgroups could be identified: 1) Benign familial infantile epilepsy (BFIE) (n=17, normal cognition, treatable seizures), 2) intermediate epilepsy (n=36, mild ID, partially pharmacoresponsive), 3) developmental and epileptic encephalopathy (DEE, n=191, severe ID, majority pharmacoresistant), 4) generalized epilepsy (n=21, mild to moderate ID, frequently with absence seizures), and 5) affected individuals without epilepsy (n=25, mild to moderate ID). Groups 1-3 presented with early-onset (median: four months) focal or multifocal seizures and epileptic discharges, whereas the onset of seizures in group 4 was later (median: 39 months) with generalized epileptic discharges. The epilepsy was not classifiable in 143 individuals. We performed functional studies expressing missense variants in ND7/23 neuroblastoma cells and primary neuronal cultures using recombinant tetrodotoxin insensitive human NaV1.6 channels and whole-cell patch clamping. Two variants causing DEE showed a strong gain-of-function (GOF, hyperpolarising shift of steady-state activation, strongly increased neuronal firing rate), and one variant causing BFIE or intermediate epilepsy showed a mild GOF (defective fast inactivation, less increased firing). In contrast, all three variants causing generalized epilepsy induced a loss-of-function (LOF, reduced current amplitudes, depolarising shift of steady-state activation, reduced neuronal firing). Including previous studies, functional effects were known for 165 individuals. All 133 individuals carrying GOF variants had either focal (76, groups 1-3), or unclassifiable epilepsy (37), whereas 32 with LOF variants had either generalized (14), no (11) or unclassifiable (5) epilepsy; only two had DEE. Computational modeling in the GOF group revealed a significant correlation between the severity of the electrophysiological and clinical phenotypes. GOF variant carriers responded significantly better to sodium channel blockers (SCBs) than to other anti-seizure medications, and the same applied for all individuals of groups 1-3. In conclusion, our data reveal clear genotype-phenotype correlations between age at seizure onset, type of epilepsy and gain- or loss-of-function effects of SCN8A variants. Generalized epilepsy with absence seizures is the main epilepsy phenotype of LOF variant carriers and the extent of the electrophysiological dysfunction of the GOF variants is a main determinant of the severity of the clinical phenotype in focal epilepsies. Our pharmacological data indicate that SCBs present a therapeutic treatment option in early onset SCN8A-related focal epilepsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.