Since 1980, in the post-smallpox vaccination era the human population has become increasingly susceptible compared to a generation ago to not only the variola (smallpox) virus, but also other zoonotic orthopoxviruses. The need for safer vaccines against orthopoxviruses is even greater now. The Lister vaccine strain (LIVP) of vaccinia virus was used as a parental virus for generating a recombinant 1421ABJCN clone defective in five virulence genes encoding hemagglutinin (A56R), the IFN-γ-binding protein (B8R), thymidine kinase (J2R), the complement-binding protein (C3L), and the Bcl-2-like inhibitor of apoptosis (N1L). We found that disruption of these loci does not affect replication in mammalian cell cultures. The isogenic recombinant strain 1421ABJCN exhibits a reduced inflammatory response and attenuated neurovirulence relative to LIVP. Virus titers of 1421ABJCN were 3 lg lower versus the parent VACV LIVP when administered by the intracerebral route in new-born mice. In a subcutaneous mouse model, 1421ABJCN displayed levels of VACV-neutralizing antibodies comparable to those of LIVP and conferred protective immunity against lethal challenge by the ectromelia virus. The VACV mutant holds promise as a safe live vaccine strain for preventing smallpox and other orthopoxvirus infections.
Cowpox virus (CPXV) strain GRI-90 contains six genes encoding kelch-like proteins. All six proteins contain both, the N-terminal BTB domain and the C-terminal kelch domain. We constructed mutant variants of a CPXV strain with targeted deletions of one to four genes of the kelch family, namely D11L, C18L, G3L, and A57R. As kelch genes are located in terminal variable regions of the CPXV genome, we studied the relationship of these genes with integral biological characteristics such as virulence, host range, reproduction in vitro and in ovo (in chicken embryos). It was demonstrated that the following effects occurred in a gene dose dependent manner with an increase of the number of genes deleted: (1) range of sensitive cells altered--deletion mutants lacking three genes displayed a considerably decreased ability to reproduce in MDCK cells; mutants lacking four genes lost this ability completely; (2) analysis of pocks formed by mutants with deletion of three and four kelch-like genes on chorioallantoic membranes of chicken embryos demonstrated that pock size and virus yield were significantly decreased; (3) light microscopic analysis of the pocks revealed impaired proliferation and reduced vascularisation in the pock region. More alterations were detected by electron microscopic analysis: the reproduction of mutants results in a reduction of the number of mature virions formed, and in many cells this process was arrested at the stage of assembly of immature virions; and (4) the evaluation of LD(50) and body weight loss in BALB/c mice infected intranasally with CPXVs revealed a reduction of the virulence of the deletion mutants, which became statistically significant when four kelch-like genes were excised.
The LIVPΔ6 strain of vaccinia virus (VACV) was created by genetic engineering on the basis of previously obtained attenuated 1421ABJCN strain by target deletion of the A35R gene encoding an inhibitor of antigen presentation by the major histocompatibility complex class II. 1421ABJCN is the LIVP strain of VACV with five inactivated virulence genes encoding hemagglutinin (A56R), γ-interferon-binding protein (B8R), thymidine kinase (J2R), complement-binding protein (C3L), and Bcl2-like inhibitor of apoptosis (N1L). The highly immunogenic LIVPΔ6 strain could be an efficient fourth-generation attenuated vaccine against smallpox and other orthopoxvirus infections.
The modern approach to developing attenuated smallpox vaccines usually consists in targeted inactivation of vaccinia virus (VACV) virulence genes. In this work, we studied how an elevated production of extracellular enveloped virions (EEVs) and the route of mouse infection can influence the virulence and immunogenicity of VACV. The research subject was the LIVP strain, which is used in Russia for smallpox vaccination. Two point mutations causing an elevated production of EEVs compared with the parental LIVP strain were inserted into the sequence of the VACV A34R gene. The created mutant LIVP-A34R strain showed lower neurovirulence in an intracerebral injection test and elevated antibody production in the intradermal injection method. This VACV variant can be a promising platform for developing an attenuated, highly immunogenic vaccine against smallpox and other orthopoxvirus infections. It can also be used as a vector for designing live-attenuated recombinant polyvalent vaccines against various infectious diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.