LXCat is an open‐access platform (http://www.lxcat.net) for curating data needed for modeling the electron and ion components of technological plasmas. The data types presently supported on LXCat are scattering cross sections and swarm/transport parameters, ion‐neutral interaction potentials, and optical oscillator strengths. Twenty‐four databases contributed by different groups around the world can be accessed on LXCat. New contributors are welcome; the database contributors retain ownership and are responsible for the contents and maintenance of the individual databases. This article summarizes the present status of the project.
An overview is presented of experimental and theoretical research in the field of physics and engineering of singlet delta oxygen (SDO) production in low-temperature plasma of various electric discharges. Attention is paid mainly to the SDO production with SDO yield adequate for the development of an electric discharge oxygen–iodine laser (DOIL). The review comprises a historical sketch describing the main experimental results on SDO physics in low-temperature plasma obtained since the first detection of SDO in electric discharge in the 1950s and the first attempt to launch a DOIL in the 1970s up to the mid-1980s when several research groups started their activity aimed at DOIL development, stimulated by success in the development of a chemical oxygen–iodine laser (COIL). A detailed analysis of theoretical and experimental research on SDO production in electric discharge from the mid-1980s to the present, when the first DOIL has been launched, is given. Different kinetic models of oxygen low-temperature plasma are compared with the model developed by the authors. The latter comprises electron kinetics based on the accompanying solution of the electron Boltzmann equation, plasma chemistry including reactions of excited molecules and numerous ion–molecular reactions, thermal energy balance and electric circuit equation. The experimental part of the overview is focused on the experimental methods of SDO detection including experiments on the measurements of the Einstein coefficient for SDO transition
and experimental procedures of SDO production in self-sustained and non-self-sustained discharges and analysis of different plasma-chemical processes occurring in oxygen low-temperature plasma which brings limitation to the maximum SDO yield and to the lifetime of the SDO in an electric discharge and its afterglow. Quite recently obtained results on gain and output characteristics of DOIL and some projects aimed at the development of high-power DOIL are discussed.
The constriction of the positive column of a glow discharge in argon was studied both experimentally and theoretically. In experiments the direct current discharge was maintained in a cylindrical glass tube of 3 cm internal diameter and 75 cm length. The voltage–current U(I) characteristics of the discharge were measured at a gas pressure P from 1 to 120 Torr in a wide range of discharge currents. At P > 20 Torr the measured U(I) characteristics display the classical hysteresis effect: the transition from the diffuse to the contracted discharge form (with increasing current) occurs at a current higher than that for reverse transition (with decreasing current). It was also found that in some cases the so-called partially contracted form of the discharge is realized, when the diffuse and contracted forms coexist in the discharge tube.To calculate the plasma parameters under experimental conditions a 1D axial-symmetric discharge model for pure argon was developed. The details of the model are described and the results of simulations are presented. In particular, the electric field strength E in the positive column was calculated as a function of the discharge current. Theoretical E(I) characteristics are compared with those derived from the experiment. For the first time, the detailed kinetic model without the usage of fit parameters predicts the hysteresis effect in pure Ar with parameters of diffuse and constricted forms of the discharge in good agreement with the experiment.
The possibility of obtaining a high specific input energy in an electron-beam sustained discharge ignited in oxygen gas mixtures O 2 : Ar : CO (or H 2) at the total gas pressures of 10-100 Torr was experimentally demonstrated. The specific input energy per molecular component exceeded ∼6 kJ l −1 atm −1 (150 kJ mol −1) as a small amount of carbon monoxide was added into a gas mixture of oxygen and argon. It was theoretically demonstrated that one might expect to obtain a singlet delta oxygen yield of 25% exceeding its threshold value needed for an oxygen-iodine laser operation at room temperature, when maintaining a non-self-sustained discharge in oxygen gas mixtures with molecular additives CO, H 2 or D 2. The efficiency of singlet delta oxygen production can be as high as 40%.
A new quasi-one-dimensional model for a negative corona in air is formulated allowing for the quantitative description of the mechanism of Trichel-pulse formation. Detailed analysis of the processes controlling pulse dynamics is made. Comparison with experiment for a short-gap corona demonstrates a reasonable agreement with the shape of the pulse and in the average characteristics of the negative corona.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.