Abstract.We investigate relative role of various types of solar wind streams in generation of magnetic storms. On the basis of the OMNI data of interplanetary measurements for the period of 1976-2000 we analyze 798 geomagnetic storms with Dst ≤ -50 nT and their interplanetary sources: corotating interaction regions (CIR), interplanetary CME (ICME) including magnetic clouds (MC) and Ejecta and compression regions Sheath before both types of ICME.For various types of solar wind we study following relative characteristics: occurrence rate; mass, momentum, energy and magnetic fluxes; probability of generation of magnetic storm (geoeffectiveness) and efficiency of process of this generation. Obtained results show that despite magnetic clouds have lower occurrence rate and lower efficiency than CIR and Sheath they play an essential role in generation of magnetic storms due to higher geoeffectiveness of storm generation (i.e higher probability to contain large and longterm southward IMF Bz component).
Abstract.A comparison of specific interplanetary conditions for 798 magnetic storms with Dst < −50 nT during 1976-2000 was made on the basis of the OMNI archive data. We categorized various large-scale types of solar wind as interplanetary drivers of storms: corotating interaction region (CIR), Sheath, interplanetary CME (ICME) including both magnetic cloud (MC) and Ejecta, separately MC and Ejecta, and "Indeterminate" type. The data processing was carried out by the method of double superposed epoch analysis which uses two reference times (onset of storm and minimum of Dst index) and makes a re-scaling of the main phase of the storm in a such way that all storms have equal durations of the main phase in the new time reference frame. This method reproduced some well-known results and allowed us to obtain some new results. Specifically, obtained results demonstrate that (1) in accordance with "output/input" criteria the highest efficiency in generation of magnetic storms is observed for Sheath and the lowest one for MC, and (2) there are significant differences in the properties of MC and Ejecta and in their efficiencies.
Variations in the solar wind (SW) parameters with scales of several years are an important characteristic of solar activity and the basis for a long‐term space weather forecast. We examine the behavior of interplanetary parameters over 21–24 solar cycles (SCs) on the basis of the OMNI database (https://spdf.gsfc.nasa.gov/pub/data/omni). Since changes in the parameters can be associated with both changes in the number of different large‐scale types of SW and with variations in the values of these parameters at different phases of the solar cycle and during the transition from one cycle to another, we select the entire study period in accordance with the Catalog of large‐scale SW types for 1976–2019 (see the site http://www.iki.rssi.ru/pub/omni, [Yermolaev, Nikolaeva, et al., 2009, https://doi.org/10.1134/s0010952509020014], which covers the period from 21 to 24 SCs) and in accordance with the phases of the cycles, and average the parameters at selected intervals. In addition to a sharp drop in the number of interplanetary coronal mass ejections and associated sheath types, there is a noticeable drop in the value (by 20%–40%) of plasma parameters and magnetic field in different types of solar wind at the end of the 20th century and a continuation of the fall or persistence at a low level in the 23–24 cycles. Such a drop in the solar wind is apparently associated with a decrease in solar activity and manifests itself in a noticeable decrease in space weather factors.
Using the OMNI data for period 1976-2000 we investigate the temporal profiles of 20 plasma and field parameters in the disturbed large-scale types of solar wind (SW): CIR, ICME (both MC and Ejecta) and Sheath as well as the interplanetary shock (IS). To take into account the different durations of SW types we use the double superposed epoch analysis (DSEA) method: re-scaling the duration of the interval for all types in such a manner that, respectively, beginning and end for all intervals of selected type coincide. As the analyzed SW types can interact with each other and change parameters as a result of such interaction, we investigate separately 8 sequences of SW types: (1) CIR, (2) IS/CIR, (3) Ejecta, (4) Sheath/Ejecta, (5) IS/Sheath/Ejecta, (6) MC, (7) Sheath/MC, and ( 8) IS/Sheath/MC. The main conclusion is that the behavior of parameters in Sheath and in CIR are very similar both qualitatively and quantitatively. Both the high-speed stream (HSS) and the fast ICME play a role of pistons which push the plasma located ahead them. The increase of speed in HSS and ICME leads at first to formation of compression regions (CIR and Sheath, respectively), and then to IS. The occurrence of compression regions and IS increases the probability of growth of magnetospheric activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.