We propose ALFA -a novel late fusion algorithm for object detection. ALFA is based on agglomerative clustering of object detector predictions taking into consideration both the bounding box locations and the class scores. Each cluster represents a single object hypothesis whose location is a weighted combination of the clustered bounding boxes.ALFA was evaluated using combinations of a pair (SSD and DeNet) and a triplet (SSD, DeNet and Faster R-CNN) of recent object detectors that are close to the state-of-the-art. ALFA achieves state of the art results on PASCAL VOC 2007 and PASCAL VOC 2012, outperforming the individual detectors as well as baseline combination strategies, achieving up to 32% lower error than the best individual detectors and up to 6% lower error than the reference fusion algorithm DBF -Dynamic Belief Fusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.