A study was made on toxicity and hazards of 16 chladons which are representatives of various halogen derivatives of saturated hydrocarbons (fluorine derivatives of methane, ethane, propane, butane). It is shown that in terms of acute toxicity parameters, the studied chladons refer to low-toxic and low-risk substances (hazard class 4 according to GOST 12.1.007). The least toxic are fully fluorinated hydrocarbons: tetrafluoromethane, hexafluoroethane, octafluoropropane, decafluorobutane.` In the clinical picture of acute poisoning, signs of a narcotic effect prevail. Limit values Limac were determined for fluorocarbons in the range of 750-180 mg/l, for mixed fluorochlorinated hydrocarbons- up to 100 mg / l (45, 80 mg/l), for fluoriodohydrocarbns (pentafluoriodoethane) 10.5 mg/l. The main criteria tests were indicators of the state of the nervous and cardiovascular systems. Long-term exposure to the compounds studied (chladons Nos. 32, 125, 227, 218, 31-10) caused marked changes in the functional state of the nervous and cardiovascular systems, peripheral blood composition and metabolic processes. Hygiene standards for most tested chladons in the workplace air (MAC workplace) are approved at the level of 3000 mg/m3, hazard class 4;,vapors; in the atmospheric air of residential areas, the MAC. average daily of 10 (20) mg/m3 is set, and 100 mg/m3 for maximum single concentration (MAC.maximum single), reflective -resorptive effect, hazard class 4.
П роведен анализ литературных сведений по токсичности и опасности производных фталевых кислот. Показано, что фталаты широко используются в различных отраслях хозяйства в качестве пластификаторов. При однократном поступлении в организм фталаты, как правило, являются малотоксичными и малоопасными веществами. Повторное воздействие этими соединениями приводит к их накоплению в организме, оказывая политропное действие, с поражением печени, почек, легких, обладают эмбриотоксическим и гонадотоксическим эффектом. Показано, что изученные фталаты представляют опасность для работающих при воздействии в виде аэрозолей в воздухе производственных помещений. По итогам анализа и обобщения литературных сведений сделаны основные выводы: для объективной оценки опасности производных фталевых кислот необходимо изучение токсического действия этих соединений в подостром и хроническом экспериментах. Установление класса опасности фталатов на основе изучения лишь острой токсичности может привести к ошибочному заключению, с негативными последствиями для здоровья и жизни персонала и населения.
Toxicity and hazard assessment of dioctyl terephthalate (DOTP) was performed in acute, subacute, and chronic experiments, and its principal toxicometry parameters were determined.It was found that on single exposure DOTP exhibits low toxicity and hazard. No resorptive and irritant effects on skin and mucous membrane of eyes were detected in animal experiments. The single inhalation exposure threshold limit value was set at 300 mg/m3, based on the results of monitoring of the functional state of the central nervous system and myocardium and hematological parameters.Thirty-day subacute experiments (oral administration, inhalation exposure, and skin applications) revealed no accumulation of the compound.Four-month chronic exposure to DOTP aerosols (concentration 96,8 mg/m3) caused disorder of the functional state of the central nervous system and myocardium, changes in the hematological and biochemical parameters, gas and acid-base status of the blood, and morphological changes in the lungs and heart. Embryotoxic, genotoxic and gonadotoxic effects were not detected.The chronic inhalation exposure threshold limit value for DOTP (Limch) was set at 18,6 mg/m3, and the concentration of 3,4 mg/m3 was found to be ineffective.The maximum allowable concentration of DOTP in the air of the working area was set at 3,0 mg/m3, hazard class 3.
Toxicity and hazard assessment of the mixture of saturated hydrocarbons C6-C10 (hexane, heptane, octane, nonane, decane)) at a single and chronic exposure was PERFORMED in animal experiments. It was shown that in terms of acute toxicity, the mixture is low hazard, exhibits moderate irritant effect on skin and eye mucous membrane and shows a slight dermal resorptive effect. The threshold limit concentration for a single inhalation exposure (Limac) as estimate4d by the resorptive effect is 5250±mg/m3 At a long 90 day continuous exposure, neuro-, hepato- and embryo toxicity was revealed at a concentration of 160mg/m3. The threshold limit concentration for chronic exposure (Limch) was estimated as 31.4 mg/ m3 and no effect concentration as 5.2 mg/m3. The threshold limit concentration of the mixtu re based on reflex action was estimated on a level of 280 mg/m3. Based on the investigations outcome, the mixture of saturated hydrocarbons C6-C10 is referred to hazard class 3. Maximum allowable concentrations (MACs) in the atmospheric air of residential areas were substantiated: MAC average daily based on resorptive effect equals to 5 mg/m3; MAC maximum single based on reflex action equals to 50 mg/m3.
To date, there have been no exposure standards for air concentrations of 1,4-dichlorohexafluorobutene (DCHF) in the work areas. The study was aimed to assess the toxicity of DCHF and to evaluate health hazard in acute, subacute, and chronic experiments. It was found that the substance was highly hazardous, DL50 in mice after intragastric injection was 79.0 mg/kg, СL50 was 229.0 mg/m3, and in rats these values were 86,0 mg/kg and 670,0 mg/m3. In animals, DCHF had a moderate local irritative effect on animal skin and ocular mucous membranes, as well as the skin resorptive effect. The 18.2 mg/m3 threshold limit concentration for a single inhalation exposure to DCHF was defined based on the changes in behavior responses and blood parameters. The 30-day subacute inhalation experiment revealed the pronounced cumulative effect of the substance. The 4-months chronic inhalation study showed that the exposure of experimental rats to 16.8 mg/m3 concentration of DCHF resulted in impaired function of central nervous system and cardiac activity, altered hematologic, biochemical, acid-base, and blood gas values, as well as in morphological alterations in lungs, which persisted after the 30-day recovery period. The chronic exposure threshold defined for DCHF was 2.2 mg/m3, and the defined no observable effect level was 0.24 mg/m3. Based on the study results, the maximum permissible concentration of DCHF in the air of the working area of 0.2 mg/m3 was confirmed and approved, the substance was assigned hazard class 2, vapor + aerosol + (specific protection of skin and eyes required). Gas chromatographic method using electron-capture detection for determination of DCHF mass air concentration in the work areas has been developed and approved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.