Penning ionization (PI) processes for cold Rydberg alkali metal atoms are investigated. Contrary to the reference case of a hydrogen atom, the corresponding autoionization widths demonstrate a sharp dependence (by orders of magnitude) on the orbital quantum numbers of the atoms exposed to long-range dipole-dipole interaction. An important feature of PI is the nontrivial dependence of its efficiency on the size of Rydberg particles. For all types of alkali atoms, the existence of optimal Rydberg pairs has been demonstrated (highly asymmetric configurations of Rydberg pairs), which lead to an explosive intensification (by several orders of magnitude) of the formation of free electrons due to PI processes. This property makes PI an important source of the formation of primary charged particles during the formation of cold Rydberg plasma. The presented numerical data for potassium atomic pairs demonstrate a significant effect of the Förster resonance on the values of PI rate constants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.