In order to increase the efficiency of gas purification from the particles of up to 20 microns and to increase the service life of bag and electrostatic filters, the authors propose to use a centrifugal separation device with coaxially arranged pipes to be installed before the fine purification devices. The numerical studies of gas dynamics in a separation device were conducted in ANSYS Fluent software package. As a result of conducted numerical studies, it was found that the pressure loss in the centrifugal separation device is not more than 70 Pa at the inlet gas flow rate from 1 to 15 m/s and the width of rectangular hole within the range from 10 to 15 mm. The low pressure losses are caused by the design features; in particular, the resulting vortices in the inter-cylindrical space practically do not contact the wall surfaces of device. The equations of pressure loss depending on the width of rectangular holes and the hydraulic resistance coefficient of separation device depending on the inlet gas flow rate were obtained. The design coefficient of hydraulic resistance of separation device was equal to 0.45.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.