The implementation of future graphene-based electronics is essentially restricted by the absence of a band gap in the electronic structure of graphene. Options of how to create a band gap in a reproducible and processing compatible manner are very limited at the moment. A promising approach for the graphene band gap engineering is to introduce a large-scale sublattice asymmetry. Using photoelectron diffraction and spectroscopy we have demonstrated a selective incorporation of boron impurities into only one of the two graphene sublattices. We have shown that in the well-oriented graphene on the Co(0001) surface the carbon atoms occupy two nonequivalent positions with respect to the Co lattice, namely top and hollow sites. Boron impurities embedded into the graphene lattice preferably occupy the hollow sites due to a site-specific interaction with the Co pattern. Our theoretical calculations predict that such boron-doped graphene possesses a band gap that can be precisely controlled by the dopant concentration. B-graphene with doping asymmetry is, thus, a novel material, which is worth considering as a good candidate for electronic applications.
We report experimental study of luminescent properties of modern scintillation material SrI 2 :Eu 2+ carried out over the temperature range from 9 to 450 K by the means of the ultraviolet and vacuum ultraviolet spectroscopy with a time resolution. Photoluminescence of the Eu 2+ ions at 2.85 eV was studied under both the intracenter and interband excitations, including an X-ray excitation. The bandgap of the SrI 2 crystal has been estimated on the basis of the obtained results. In the temperature range below 100 K the intrinsic luminescence at 3.4 eV was revealed and this emission band was assigned by its properties to the luminescence of selftrapped anionic excitons in SrI 2 . The pronounced manifestation of the effect of multiplication of electronic excitations was revealed in the energy range above 2E g .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.