The effect of ribonucleosides on 8-oxoguanine formation in salmon sperm DNA dissolved in 1 mM phosphate buffer, pH 6.8, upon exposure to gamma rays was examined by ELISA using monoclonal antibodies against 8-oxoguanine. Nucleosides (1 mM) decreased the radiation-induced yield of 8-oxoguanine in the order Guo > Ino > Ado > Thd > Urd > Cyd. Guanosine and inosine considerably reduced deamination of cytosine in the DNA solutions upon heating for 24 h at 80 degrees C. The action of nucleosides on the heat-induced generation of reactive oxygen species in the phosphate buffer was studied. The concentration of hydrogen peroxide was measured by enhanced chemiluminescence in a peroxidase-luminol-p-iodophenol system; the hydroxyl radical formation was measured fluorometrically by the use of coumarin-3-carboxylic acid. Guanosine and inosine considerably decreased the heat-induced production of both hydrogen peroxide and OH radicals. Guanosine and inosine increased survival of mice after a lethal dose of radiation. They especially enhanced the survival of animals when were administered shortly after irradiation. The results indicate that guanosine and inosine, natural antioxidants, prevent oxidative damage to DNA, decrease the generation of ROS, and protect mice against gamma-radiation-induced death.
The formation of long-lived reactive protein species of bovine serum albumin (BSA), ovalbumin, casein and casein hydrolyzate with a half-life of 3-5 hours was shown using chemiluminescence induced by X-ray radiation. It was found that long-lived reactive protein species are capable of generating reactive oxygen species (ROS) (H₂O₂, OH(•), HO₂(•)¹O₂) in the aquatic environment over a long period of time in vitro. The interaction of X-ray-irradiated BSA with DNA in vitro led to the formation of 8-oxoguanine (8-oxo-7,8-dihydroguanine), a biomarker of oxidative damage to DNA. Some natural antioxidants are effective scavengers of ROS (inosine, tryptophan, methionine and ascorbate). They protect DNA from the action of long-lived reactive protein species leading to ROS generation and the formation of 8-oxoguanine. The intravenous injection of X-ray radiation-induced, long-lived reactive protein species to rats, as well as the peroral and intraperitoneal administration of these products to mice, gave rise to cytogenetic injuries in the cells of their red bone marrow through the formation of micronuclei in polychromatophilic erythrocytes. The administration of the same natural antioxidants used for in vitro experiments soon after irradiation made it possible to effectively eliminate the genotoxic action of oxidative stress caused by radiation-induced, long-lived reactive protein species. Our data represent clear evidence that the oxidative damage to proteins induced by X-rays is directly involved in the induction of a response to DNA damage in rodents.
Generation of hydrogen peroxide and hydroxyl radicals in L-amino acid solutions in phosphate buffer, pH 7.4, under X-ray irradiation was determined by enhanced chemiluminescence in the luminol-p-iodophenol-peroxidase system and using the fluorescent probe coumarin-3-carboxylic acid, respectively. Amino acids are divided into three groups according to their effect on the hydrogen peroxide formation under irradiation: those decreasing yield of H2O2, having no effect, and increasing its yield. All studied amino acids at 1 mM concentration decrease the yield of hydroxyl radicals in solution under X-ray irradiation. However, the highest effect is observed in the order: Cys > His > Phe = Met = Trp > Tyr. At Cys, Tyr, and His concentrations close to physiological, the yield of hydroxyl radicals decreases significantly. Immunoenzyme analysis using monoclonal antibodies to 8-oxoguanine (8-oxo-7,8-dihydroguanine) was applied to study the effect of amino acids with the most pronounced antioxidant properties (Cys, Met, Tyr, Trp, Phe, His, Lys, Arg, Pro) on 8-oxoguanine formation in vitro under X-ray irradiation. It is shown that amino acids decrease the content of 8-oxoguanine in DNA. These amino acids within DNA-binding proteins may protect intracellular DNA against oxidative damage caused by formation of reactive oxygen species in conditions of moderate oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.