The three-dimensional structure of the manganese-phosphate complex of inorganic pyrophosphatase from Succharomyces cerevisiae has been refined to an R factor of 19.0% at 2.4-A resolution. X-ray data were collected from a single crystal using an imaging plate scanner and synchrotron radiation. There is one dimeric omolecule in the asymmetric unit. The upper estimate of the root-mean-square coordinate error is 0.4 A using either the oA plot or the superposition of the two crystallographically independent subunits. The good agreement between the coordinates of the two subunits, which were not subjected to non-crystallographic symmetry restraints, provides independent validation of the structure analysis. The active site in each subunit contains four manganese ions and two phosphates. The manganese ions are coordinated by the side chains of aspartate and glutamate residues. The phosphate groups, which were identified on the basis of their local stereochemistry, interact either directly or via water molecules with manganese ions and lysine, arginine, and tyrosine side chains. The phosphates are bridged by two of the manganese ions. The outer phosphate is exposed to solvent. The inner phosphate is surrounded by all four manganese ions. The ion-binding sites are related to the order of binding previously established from kinetic studies. A hypothesis for the transition state of the catalytic reaction is put forward.
The 3-dimensional structure of inorganic pyrophosphatase from Therrnus thermophilus (T-PPase) has been determined by X-ray diffraction at 2.0 A resolution and refined to R = 15.3%. The structure consists of an antiparallel closed @sheet and 2 a-helices and resembles that of the yeast enzyme in spite of the large difference in size (174 and 286 residues, respectively), little sequence similarity beyond the active center (about 20%), and different oligomeric organization (hexameric and dimeric, respectively). The similarity of the polypeptide folding in the 2 PPases provides a very strong argument in favor of an evolutionary relationship between the yeast and bacterial enzymes. The same Greek-key topology of the 5-stranded 0-barrel was found in the OB-fold proteins, the bacteriophage gene-5 DNA-binding protein, toxic-shock syndrome toxin-1, and the major cold-shock protein of Bacillus subtilis. Moreover, all known nucleotide-binding sites in these proteins are located on the same side of the 0-barrel as the active center in T-PPase. Analysis of the active center of T-PPase revealed 17 residues of potential functional importance, 16 of which are strictly conserved in all sequences of soluble PPases. Their possible role in the catalytic mechanism is discussed on the basis of the present crystal structure and with respect to site-directed mutagenesis studies on the Escherichia coli enzyme. The observed oligomeric organization of T-PPase allows us to suggest a possible mechanism for the allosteric regulation of hexameric PPases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.