The article presents the results of experimental research of the rotary conical tillage working unit in the soil canal. The authors established a functional dependence of driving force and the rotation speed of the conical working unit from the angles of attack α and inclination to the horizontal level β, as well as the depth of tillage a. The rational value of angles of attack α and inclination of rotation axis to the horizon β was determined, which is providing the minimum driving force or the maximum speed of rotation of working unit. At the same time the extreme points on the tractive effort and the rotational speed are different. Therefore, the rational value of angles α and β can be chosen only as a compromise for different depths of soil treatment are in the following ranges. For а=8 cm: 44 ≤α ≤48, 25 ≤ β ≤28; for а=10 cm: 39 ≤α ≤44, 30 ≤ β ≤31; for а=12 cm: 34 ≤α ≤40, 33 ≤ β ≤37. When operating a conical working unit, we can recommend the following. The angle of inclination of the axis of rotation to the horizontal β and the angle of attack α need to be changed, depending on the processing conditions of the soil. During autumn tillage, you must install the angles α and β to provide the least traction so that to reduce fuel consumption. In spring, when preparing the fields for sowing, in the first place it is placed the quality of the soil, which increases with increasing ω. Therefore, it is necessary to set the angles α and β so, as to maximize the speed of rotation of the working unit.
ON THE ISSUE OF GRAIN PEELING IN ROTOR PEELERSLotfullin R.Sh., Ibyatov R.I., Dmitriev A.V., Ziganshin B.G. Abstract. The article shows the theoretical study of percussive interaction of a grain, which is accelerated by the rotor peelers, with a deck. Theoretically, we defined fracture strength of grain structural elements in case of possible directions of grain and grain impact conditions on deck -under the condition of fixed deck, provided its rotation in the direction of rotor rotation, provided its rotation in the direction opposite the rotor rotation. The work and expended kinetic energy, required for such a failure, was found; the concept of grain recovery rate as the ratio of the kinetic energy before it hit the deck and after was given. Efficiency coefficient of the entire system was defined for different embodiments of grain pin on deck. It is proved that the most effective grain peeling will occur when the deck rotate in the opposite direction of the rotor rotation. In this case, the grain is moved, firstly, in air stream, generated by the rotor, as moving closer to the deck surface it moves in the air flow, generated by it, and changes its direction to reverse movement. That flow is easily controlled by changing the speed of the deck, which makes it possible to obtain a straight line (perpendicular to) hit the grain of it. The carried studies reveal more fully the grain interaction with the deck in the work area of rotor peelers.
The mathematical models, that reflect the dynamics of the main taxation indicators of stands with age in office software environment were developed.
The productivity of spring wheat crops is the result of a complex interaction of many different factors. Construction of mathematical models, using modern methods and approaches, make it possible to explore and optimize the conditions of the environment in relation to the genetic program of a particular culture and thus increase crop productivity. We used the monitoring results of wheat yield for 32 years and eight major independent factors, affecting it: humidity, the effective temperature during the growing season, rainfall, vegetation period, gluten content, the weight of a thousand grains, grain weight from one ear, straw length. The factor analysis was used previously to improve the efficiency of the model. The use of this analysis led to reveal a latent correlation between factors, and group the data, thereby reducing the dimension of the problem. We obtain four main components (MC), corresponding a linear combination of factor loadings and factors, that describe the 83% of output factor dispersion. A part of dispersion, explained by MC1, is approximately 37%; MC2 - 21%, MC - 13% MC4 - 12%. Further investigation is to build and compare two mathematical models. The first classical model is deal with the construction of the regression equation and the second is a neural network research model, based on neural networks of multilayer perceptron type with one input, one output, and one hidden layer. The four major components are used as input parameters of the model. The models were tested on the input set and checked for adequacy of using Fisher’s exact test. As a result, both models showed good results, but more similar to the original data were the results of the neural network model.
We consider the non-isothermic layer flow of two-phase non-Newtonian medium on the inner surface of the conical tube. The flow regime is laminar , axisymmetric and steady. The rheological state of the medium is described by the generalized law Ostwald de Ville. We also took into account the dependence of the temperature of medium consistency. The conservation equations of mass, momentum and energy mechanics of heterogeneous medium is used in quasi-homogeneous approximation. The recorded in biconical coordinate system equations are solved by method of equal costs surfaces. The provisions of equal costs surfaces are determined from the condition of the flow of the medium constancy between them. Conservation equations, written on the flow lines, are simplified and take the form of ordinary differential equations on the longitudinal coordinate. So that to calculate the partial derivatives on the transverse coordinate, which are present in the right part of the differential equations, the grid solutions are presented in the form of series expansion. The system of constructed ordinary differential equations is solved numerically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.