In this paper we discuss R-matrix-valued Lax pairs for sl N Calogero-Moser model and their relation to integrable quantum long-range spin chains of the Haldane-Shastry-Inozemtsev type. First, we construct the R-matrix-valued Lax pairs for the third flow of the classical Calogero-Moser model. Then we notice that the scalar parts (in the auxiliary space) of the M -matrices corresponding to the second and third flows have form of special spin exchange operators. The freezing trick restricts them to quantum Hamiltonians of long-range spin chains. We show that for a special choice of the R-matrix these Hamiltonians reproduce those for the Inozemtsev chain. In the general case related to the Baxter's elliptic R-matrix we obtain a natural anisotropic extension of the Inozemtsev chain. Commutativity of the Hamiltonians is verified numerically. Trigonometric limits lead to the Haldane-Shastry chains and their anisotropic generalizations.
We introduce a family of classical integrable systems describing dynamics of M interacting gl N integrable tops. It extends the previously known model of interacting elliptic tops. Our construction is based on the GL N R-matrix satisfying the associative Yang-Baxter equation. The obtained systems can be considered as extensions of the spin type Calogero-Moser models with (the classical analogues of) anisotropic spin exchange operators given in terms of the R-matrix data. In N = 1 case the spin Calogero-Moser model is reproduced. Explicit expressions for gl N M -valued Lax pair with spectral parameter and its classical dynamical r-matrix are obtained. Possible applications are briefly discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.