The task of organization a closed time-optimal control system of linear object with distributed parameters of parabolic type is considered. The object has two lumped internal controls for the power of heat sources excited in the electromagnetic field of an inductor. The proposed method for the synthesis of optimal controllers uses an alternance method for calculating the optimal program controls for each of the control actions. An example of the construction of a quasi-optimal time control system for the process of periodic induction heating of a metal workpiece with constant values of the feedback coefficients calculated for the most characteristic initial spatial distribution is given.
The formulation and method of solution of the problem of time-optimal control of induction heating process of an unlimited plate with two control actions on the value of internal heat sources with technological constraint in relation to a one-dimensional model of the temperature field are proposed. The problem is solved under the conditions of a given accuracy of uniform approximation of the final temperature distribution over the thickness of the plate to the required. The method of finite integral transformations is used to search for the input-output characteristics of an object with distributed parameters with two control actions. The preliminary parameterization of control actions based on analytical optimality conditions in the form of the Pontryagin maximum principle is used. At the next stage reduction is performed to the problem of semi-infinite optimization, the solution of which is found using the alternance method. The alternance properties of the final resulting temperature state at the end of the optimal process lead to a basic system of relations, which, if there is additional information about the shape of the temperature distribution curve, is reduced to a system of equations that can be solved. An example of solving the problem of time-optimal control of temperature field of an unlimited plate with two offices is carried out in two stages. At first stage the case of induction heating without maximum temperature constraints is considered, at the second stage is carried out on the basis of the results of the first stage to obtain the solution subject to the limitation on the maximum temperature of the heated billet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.