NAS RK is pleased to announce that News of NAS RK. Series of geology and technical sciences scientific journal has been accepted for indexing in the Emerging Sources Citation Index, a new edition of Web of Science. Content in this index is under consideration by Clarivate Analytics to be accepted in the Science Citation Index Expanded, the Social Sciences Citation Index, and the Arts & Humanities Citation Index. The quality and depth of content Web of Science offers to researchers, authors, publishers, and institutions sets it apart from other research databases. The inclusion of News of NAS RK. Series of geology and technical sciences in the Emerging Sources Citation Index demonstrates our dedication to providing the most relevant and influential content of geology and engineering sciences to our community. Қазақстан Республикасы Ұлттық ғылым академиясы "ҚР ҰҒА Хабарлары. Геология жəне техникалық ғылымдар сериясы" ғылыми журналының Web of Science-тің жаңаланған нұсқасы Emerging Sources Citation Index-те индекстелуге қабылданғанын хабарлайды. Бұл индекстелу барысында Clarivate Analytics компаниясы журналды одан əрі the Science Citation Index Expanded, the Social Sciences Citation Index жəне the Arts & Humanities Citation Index-ке қабылдау мəселесін қарастыруда. Webof Science зерттеушілер, авторлар, баспашылар мен мекемелерге контент тереңдігі мен сапасын ұсынады. ҚР ҰҒА Хабарлары. Геология жəне техникалық ғылымдар сериясы Emerging Sources Citation Index-ке енуі біздің қоғамдастық үшін ең өзекті жəне беделді геология жəне техникалық ғылымдар бойынша контентке адалдығымызды білдіреді. НАН РК сообщает, что научный журнал «Известия НАН РК. Серия геологии и технических наук» был принят для индексирования в Emerging Sources Citation Index, обновленной версии Web of Science. Содержание в этом индексировании находится в стадии рассмотрения компанией Clarivate Analytics для дальнейшего принятия журнала в the Science Citation Index Expanded, the Social Sciences Citation Index и the Arts & Humanities Citation Index. Web of Science предлагает качество и глубину контента для исследователей, авторов, издателей и учреждений. Включение Известия НАН РК. Серия геологии и технических наук в Emerging Sources Citation Index демонстрирует нашу приверженность к наиболее актуальному и влиятельному контенту по геологии и техническим наукам для нашего сообщества.
Background: The article considers the phenolic hop compounds’ effect on the quality indicators of finished beer. The topic under consideration is relevant since it touches on the beer matrix colloidal stability when compounds with potential destabilizing activity are introduced into it from the outside. Methods: The industrial beer samples’ quality was assessed by industry-accepted methods and using instrumental analysis methods (high-performance liquid chromatography methods—HPLC). The obtained statistical data were processed by the Statistics program (Microsoft Corporation, Redmond, WA, USA, 2006). Results: The study made it possible to make assumptions about the functional dependence of the iso-α-bitter resins and isoxanthohumol content in beer samples. Mathematical analysis indicate interactions between protein molecules and different malted grain and hop compounds are involved in beer structure, in contrast to dry hopped beer, where iso-a-bitter resins, protein, and coloring compounds were significant, with a lower coefficient of determination. The main role of rutin in the descriptor hop bitterness has been established in kettle beer hopping technology, and catechin in dry beer hopping technology, respectively. The important role of soluble nitrogen and β-glucan dextrins in the perception of sensory descriptors of various technologies’ beers, as well as phenolic compounds in relation to the formation of bitterness and astringency of beer of classical technology and cold hopping, has been shown. Conclusions: The obtained mathematical relationships allow predicting the resulting beer quality and also make it possible to create the desired flavor profiles.
Introduction. The research featured the effect of various hopping conditions on the content of polyphenolic compounds associated with the extraction and biotransformation of hop compounds. This mechanism is responsible for uncharacteristic beer flavor in the traditional production method. The research objective was to study the migration routes, influence factors, and changes in the content of hop polyphenols in model experiments in order to reduce various factors in the production process chain. The experiment was important from the point of view of identifying the polyphenols contribution to the beer colloidal system. Study objects and methods. The study involved granulated aromatic hop of Tetnanger variety harvested in 2019, aqueous and 4% aqueous-alcoholic solutions simulating the wort and young beer liquid phase, and brewing yeast Sacharomyces cerevisiae of races Rh (lager) and Nottingham (ale). The work used the generally accepted methods for assessing the content of polyphenolic compounds. Results and discussion. The research established various factors that affected the migration of hop polyphenolic groups. The acidity effect on the polyphenol was established as follows: pH 4.4 contributed to a 12% greater isoxanthohumol accumulation, while pH 5.2 promoted a six times greater accumulation of anthocyanogens than pH 4.4. The total content of polyphenols during boiling was constant and correlated with the phenolic compound in different groups. The conditions of “dry” hopping, simulating the wort clarification in Wirpool, increased the dissolution of anthocyanogens by six times in comparison with kettle hopping, which was associated with the turbulent flow. The isoxanthohumol sorption and formation rate during “dry” hopping was established when modeling the maturation conditions for different temperatures, oxygen levels, and yeast races. A lower temperature (5°C) had a negative effect on the isoxanthohumol sorption. The quercetin content was found to be in the range of 0.9–2.0 mg/dm³ at 5°C and 0.8–4.7 mg/dm³ at 20°C, which determined the temperature effect on extraction during “dry” hopping. The presence of yeast cells in the medium promoted the quercetin accumulation: the quercetin content doubled at 5°C and quadrupled at 20°C compared with the control. The rutin content in the control increased for two days, and minor fluctuations in the content of yeast cells were 5.0 ÷ 7.4 mg/dm3. A comparative analysis of the simple phenolic acids and aldehydes amounts under “dry” hopping conditions showed a greater decrease in their concentration because they were involved in the yeast consumption and biotransformation processes. Conclusion. The research made it possible to establish the phenolic compounds in various groups of migration routes under the conditions of classical (kettle) and “dry” methods of hopping, as well as their dependence on such factors as medium acidity, stirring intensity, temperature, oxygen content, and yeast race. The sorption rates of the polyphenolic compounds were established as follows: absorption of isoxanthohumol was at its highest during the first day of “dry” hopping, and that of rutin – within two days, while quercetin was not absorbed at all. Therefore, an additional fermentation stage can be considered as the most expedient method of “dry” hopping.
Currently, a lot of research is being done on the flavoring compounds of hops. However, much less attention has been paid to the aroma formation considering the hop polyphenol different groups by various methods at the wort hopping stage. Therefore, the main goal of the research is an impact of hopping conditions on the polyphenolic compounds, when the hop is extracted variously into both wort and water to better understand extraction conditions, mechanisms, and factors as well as aroma formation considering various groups of polyphenols. As shown the hop variety, boiling time, and treatment type affect the hop polyphenols amount extracted into the wort. Aromatics varied upon a hop variety and wort boiling time accompanying a positive softening effect regarding aroma formated from malt wort compounds comparing to hopped aqueous extracts. The research proved the most noticeable pH (7 and above) impact on aroma formation caused by the polyphenol conversion. As also shown the first time, a temperature and acidic pH doubled the rutin amount, as well as the best extraction of the prenylflavanoid isoxanthohumol, was achieved by boiling at an alkaline medium pH. The results obtained indicate that various hydrophilic amino acids containing in the wort can stabilize polyphenols affecting the quality indicators of beer produced from different grain raw materials.
Background: This article is devoted to the study of the effect of electrochemically activated water (catholyte with pH 9.3) on organic compounds of the plant matrix of brewer’s spent grain in order to extract various compounds from it. Methods: Brewer’s spent grain was obtained from barley malt at a pilot plant by mashing the malt followed by filtration and washing of the grain in water and storing it at (0 ± 2) °C in craft bags. For the organic compound quantitative determination, instrumental methods of analysis (HPLC) were used, and the results were subjected to mathematical analysis. Results: The study results showed that at atmospheric pressure, the alkaline properties of the catholyte showed better results compared to aqueous extraction with respect to β-glucan, sugars, nitrogenous and phenolic compounds, and 120 min was the best period for extraction at 50 °C. The excess pressure conditions used (0.5 ÷ 1 atm) revealed an increase in the accumulation of non-starch polysaccharide and nitrogenous compounds, while the level of sugars, furan and phenolic compounds decreased with increasing treatment duration. The waste grain extract ultrasonic treatment used revealed the effectiveness of catholyte in relation to the extraction of β-glucan and nitrogenous fractions; however, sugars and phenolic compounds did not significantly accumulate. The correlation method made it possible to reveal the regularities in the formation of furan compounds under the conditions of extraction with the catholyte: Syringic acid had the greatest effect on the formation of 5-OH-methylfurfural at atmospheric pressure and 50 °C and vanillic acid under conditions of excess pressure. Regarding furfural and 5-methylfurfural, amino acids had a direct effect at excess pressure. It was shown that the content of all furan compounds depends on amino acids with thiol groups and gallic acid; the formation of 5-hydroxymethylfurfural and 5-methylfurfural is influenced by gallic and vanillic acids; the release of furfural and 5-methylfurfural is determined by amino acids and gallic acid; excess pressure conditions promote the formation of furan compounds under the action of gallic and lilac acids. Conclusions: This study showed that a catholyte allows for efficient extraction of carbohydrate, nitrogenous and monophenolic compounds under pressure conditions, while flavonoids require a reduction in extraction time under pressure conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.