The Kolka Glacier, which rushed down the Genaldon valley on September 20, 2002 (North Ossetia), is now recovering after this catastrophe. One of the most important ways to predict a new disaster is to determine the rate of ice accumulation of the new glacier and to monitor the glacier volume regularly, since its trigger mechanisms have not yet been fully studied. Recent changes of the Kolka Glacier were investigated by means of ground stereoscopic photography. The field works were carried out in 2014, 2016 and 2017. Shooting was made manually with a digital camera Canon 5D Mark II (without using a tripod) at arbitrary points, the distance between which did not exceed 100 m. The reference points were placed on the elevated relief forms on the glacier surface and coordinated by a differential GNSS receiver in the "fast static" mode. Laboratory processing of the photos was performed using Agisoft Photoscan software in automatic mode, except for the procedure of identification of reference points on stereo images. The processing made possible to obtain digital models of the glacier surface in Geo-TIFF format, the vertical error of which amounted to 0.7 m, while the horizontal one – 2.3 m. In 2014–2017, the maximal increase in height of the surface (up to 30 m) was recorded in the low part of the glacier tongue that was the result of advancing of the Kolka front along the ice-free surface. Mean annual increase in the surface elevation was equal to 2.2 m/year. Lowering of the surface in some areas may be explained by the slowing-down of the glacier flow rate, which led to the appearance of thermokarst. The glacier volume increased by 7.4±0.7 million m3. As a result, the glacier tongue advanced by 50–70 m. Average over 2014–2017 increasing in the surface elevation (2.2 m/year) was slightly smaller than in 2004–2014 (3 m/year). Quick growth of the Kolka Gacier contrasts sharply with decreasing of volume of the representative Caucasus, Djankuat and Garabashi, over the same period.
The Wenchuan (汶川) earthquake on 12 May 2008 induced a large number of landslides, collapses, and rockfalls along the Longmenshan (龙门山) fault. The landslide in Niujuan (牛圈) Valley (named Niujuan landslide), close to the epicenter, is one that travelled a long distance with damaging consequences. Using QuickBird satellite images and GIS tools, the seismogenic mass movements are analyzed, and the movement phases, travel path, and post-catastrophic processes of Niujuan landslide are described and discussed. Image interpretation and a GPS survey showed that the mass movements denuded 37% of the research area. The Niujuan landslide moved 1 950 m along the Lianhuaxingou (莲 花心沟) stream, transformed to a debris avalanche, and accumulated in the downstream bed of Niujuan Valley, where they formed a dam 30 m in height, blocking the Niujuan stream and creating a barrier lake basin with 0.11 million m 3 storage capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.