During the pandemic of novel coronavirus infection (COVID-19), computed tomography (CT) showed its effectiveness in diagnosis of coronavirus infection. However, ionizing radiation during CT studies causes concern for patients who require dynamic observation, as well as for examination of children and young people. For this retrospective study, we included 15 suspected for COVID-19 patients who were hospitalized in April 2020, Russia. There were 4 adults with positive polymerase chain reaction (PCR) test for COVID-19. All patients underwent magnetic resonance imaging (MRI) examinations using MR-LUND PROTOCOL: Single-shot Fast Spin Echo (SSFSE), LAVA 3D and IDEAL 3D, Echo-planar imaging (EPI) diffusion-weighted imaging (DWI) and Fast Spin Echo (FSE) T2 weighted imaging (T2WI). On T2WI changes were identified in 9 (60,0%) patients, on DWI – in 5 (33,3%) patients. In 5 (33,3%) patients lesions of the parenchyma were visualized on T2WI and DWI simultaneously. At the same time, 4 (26.7%) patients had changes in lung tissue only on T2WI. (P(McNemar) = 0,125; OR = 0,00 (95%); kappa = 0,500). In those patients who had CT scan, the changes were comparable to MRI. The results showed that in case of CT is not available, it is advisable to conduct a chest MRI for patients with suspected or confirmed COVID-19. Considering that T2WI is a fluid-sensitive sequence, if imaging for the lung infiltration is required, we can recommend the abbreviated MRI protocol consisting of T2 and T1 WI. These data may be applicable for interpreting other studies, such as thoracic spine MRI, detecting signs of viral pneumonia of asymptomatic patients. MRI can detect features of viral pneumonia.
Background The paper covers modern approaches to the evaluation of neoplastic processes with diffusion-weighted imaging (DWI) and proposes a physical model for monitoring the primary quantitative parameters of DWI and quality assurance. Models of hindered and restricted diffusion are studied. Material and method To simulate hindered diffusion, we used aqueous solutions of polyvinylpyrrolidone with concentrations of 0 to 70%. We created siloxane-based water-in-oil emulsions that simulate restricted diffusion in the intracellular space. To obtain a high signal on DWI in the broadest range of b values, we used silicon oil with high T2: cyclomethicone and caprylyl methicone. For quantitative assessment of our phantom, we performed DWI on 1.5T magnetic resonance scanner with various fat suppression techniques. We assessed water-in-oil emulsion as an extracorporeal source signal by simultaneously scanning a patient in whole-body DWI sequence. Results We developed phantom with control substances for apparent diffusion coefficient (ADC) measurements ranging from normal tissue to benign and malignant lesions: from 2.29 to 0.28 mm2/s. The ADC values of polymer solutions are well relevant to the mono-exponential equation with the mean relative difference of 0.91%. Conclusion The phantom can be used to assess the accuracy of the ADC measurements, as well as the effectiveness of fat suppression. The control substances (emulsions) can be used as a body marker for quality assurance in whole-body DWI with a wide range of b values.
The nuclear medicine phantom development is based on the step by step description of the computational and experimental biological object model. Computational phantoms are used for geometry of the object description and simulate physics of particle interactions with matter, while experimental phantoms are used for quality control tests and standardization of functional research protocols. Common examples are the dosimetry planning of radionuclide therapy and post-therapeutic scintigraphy with 131I. This review provides a list of methods for computational and experimental phantoms. Examples of existing phantoms created for the nuclear medicine tasks are also given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.