The high prevalence of the hepatitis B virus (HBV) in population occurs mainly due to numerous mechanisms formed in the process of the virus evolution, contributing to its survival under immunological pressure. The review presents the most complete systematization and classification of various HBV protective mechanisms basing on their influence on different parts of congenital and adaptive immune response. The analysis of literature data allows for the conclusion that two basic principles underlie the mechanisms: the strategy of the «stealth virus» (virus’s escape from recognition by the immune system) and strategy of immunosuppression. The stealth virus strategy is performed as follows: special strategy of the HBV replication which prevents the recognition by the receptors of congenital immune system; occurrence of the vaccine escape mutants; isolation of the virus in host cells and tissues providing its inaccessibility to T-cells along with hyperproduction of subviral particles as traps for specific antibodies. The core principle of the immunosuppression implemented in hepatitis B therapy is based on the phenomenon of the viral apoptotic mimicry. The result of this interaction strategy is dysfunction of NK and NKT-cells, inactivation of dendritic cell functions, and suppression of the adaptive immune response. The review demonstrates that interaction between HBV and the immune system of the macro organism is in some kind of «dynamic equilibrium» depending on numerous factors. Specific molecular targets of the viral impact are described. We propose to expand the research on the influence of the host’s genetic factors on the development of congenital and adaptive immune response against HBV, especially during the real infectious process which results in the improvement of approaches to the therapy by developing personalized treatment methods.
Background. In terms of serological properties and immunization, the wild type of HBsAg HBV and its G145R mutant behave as different antigens. This testifies to serious structural changes, which presumably could have a significant impact on the morphogenesis of virions and subviral particles. Nevertheless, morphological and ultrastructural investigations of HBV with G145R mutation have not been carried yet. Objectives. Research of structural and morphological organization of HBV in the presence of the G145R escape mutation. Methods. Studies of sera, purified viruses and recombinant HBsAg were carried out by transmission electron microscopy by the method of negative staining and indirect reaction of immunelabeling using monoclonal antibodies of different specificity. Specimens of wild type HBV and HBV with S143L mutation obtained in an identical manner were used as the control. Results. The presence of typical virus particles of HBV was shown in the specimens of wild strain and HBV with S143L mutation. Specimens of HBV with G145R mutation were characterized by expressed morphological heterogeneity. In the initial serum and in the specimen of purified virus containing G145R mutant, large oval particles 60-70 nm and up to 200 nm in size, respectively, were found. The presence of antigen structures of HBV in all heterogeneous forms was confirmed. It was shown that forming of subviral particles in the process of expression of the recombinant HBsAg with G145R mutation depends on conditions of expression and purification of the protein. They can vary from well-formed circular and oval particles to practically unstructured fine-grained masses. Conclusion. Direct data on the impact of G145R escape-mutation in S-gene, in contrast to S143L mutation, on the morphogenesis of virions and subviral particles of HBV were obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.